
Copyright © Innovative Technology Ltd 2025

ITL SDK Package Manual
Document Revision - v.1

Exported on 06/02/2025

Document Revision - v.1 ITL SDK Package Manual - 1

Change History
Version Date Comment

1 04 Feb 2025 Initial Release

Document Revision - v.1 ITL SDK Package Manual - 2

•
•
•
•
•
•
•
•

Contents
Welcome to the ITL SDK Package documentation!

ITL SDK Package Introduction
For Windows Applications
For Linux Applications
For Android Applications
Cash Device REST API
Cash Device C#.NET API
SSP Interface References

Document Revision - v.1 ITL SDK Package Manual - 3

•
•
•
•
•
•
•

Welcome to the ITL SDK Package documentation!
The below contents links allow you to browse through the ITL SDK Package documentation. We recommend and
encourage you to start with the ITL SDK Package Introduction to get an initial feel and understanding of what the
ITL SDK Package offers and provides.

For any questions, issues or concerns please feel free to get in touch with us at any time. Our Customer Service
Team is always happy to assist wherever possible. You can use our Helpdesk, send an email to support@innovative-
technology.com or call one of our offices.

Happy Coding!

Contents
ITL SDK Package Introduction
For Windows Applications
For Linux Applications
For Android Applications
Cash Device REST API
Cash Device C#.NET API
SSP Interface References

Document Revision - v.1 ITL SDK Package Manual - 4

•
•
•
•
•

•
•
•
•
•
•

•
•
•

•
•
•

ITL SDK Package Introduction

Contents
Purpose of this document
General Description
Library Versions
Supported Runtimes
ITL SDK Package Folder Structure

…\ITL_SDK_Package_vX.y.z
…\ITL_SDK_Package_vX.y.z\C#.NET4.8_Framework
…\ITL_SDK_Package_vX.y.z\C#.NET8
…\ITL_SDK_Package_vX.y.z\C#.NET8_REST
…\ITL_SDK_Package_vX.y.z\C#.NET8_REST_Android
…\ITL_SDK_Package_vX.y.z\ChangeHistory.txt

API Structure
Application Example using the REST Interface
Application Example using the C#.NET Methods

Product Support
Test Scripts
ITL SDK Package Version Convention

Purpose of this document
This manual is intended for those who would like to implement an ITL cash handling device into a host machine
application utilizing the high-level APIs from Innovative Technology Ltd. This manual provides a software engineer
with the ITL REST endpoints as well as all specifications of the available C# methods to control a cash handling
device from a host machine application via high-level API. The high-level APIs were developed by ITL to ease and
speed up integrations and to reduce the time to market for our customers and partners.

It is recommended that you study this manual carefully and use it throughout the entire host software
development. If you have any question or do not understand any part of this manual please contact
support@innovative-technology.com.

General Description
The ITL SDK Package consist of high-level C# libraries and projects that provide all the tools to develop an
application on various platforms using ITL products, e.g NV4000, Spectral Payout, SMART Coin System, Banknote
Validators.

Library Versions
The C# libraries are provided in .NET4.8 Framework and .NET8. The reason being is the available long-term support
(LTS) and life-cycle policy from Microsoft for these two versions. Please refer to the links below for further
information.

https://learn.microsoft.com/en-us/lifecycle/faq/dotnet-framework

https://dotnet.microsoft.com/en-us/platform/support/policy

Low level SSP source code examples are available upon request. However, implementing low level SSP
makes the integration much more complex, increases the likelihood of incorrect or missing error handling
and extends the development time. The available SSP source code examples are more than 10 years old
and not maintained. It is up to the developer to debug and edit to their needs.

Document Revision - v.1 ITL SDK Package Manual - 5

Supported Runtimes
The high-level REST API currently supports the following runtimes.

…\ITL_SDK_vX.y.z\CashDevice_RestAPI_V1.3.1_.NET_8.0\runtimes

ITL SDK Package Folder Structure

…\ITL_SDK_Package_vX.y.z
Main SDK package folder.

…\ITL_SDK_Package_vX.y.z\C#.NET4.8_Framework

Contains the source code for the ITLDeviceTestApp compiled in C#.NET4.8 Framework.

…\ITL_SDK_Package_vX.y.z\C#.NET8

Contains the source code for the ITLDeviceTestApp compiled in C#.NET8.

…\ITL_SDK_Package_vX.y.z\C#.NET8_REST

Contains the ITL REST server application and library that handles the available REST endoints sent by a host
application and returns the response data to the application. It also includes a Collection of available API endpoints
and the Globals variables belonging to the Collection that can be imported into Postman.

…\ITL_SDK_Package_vX.y.z\C#.NET8_REST_Android

Contains a REST server application for Android (.apk) that handles the available REST endoints sent by a host
application and returns the response data to the application. It also includes a Collection of available API endpoints
that can be imported into the API Tester app.

…\ITL_SDK_Package_vX.y.z\ChangeHistory.txt

The change history of the ITL SDK Package.

API Structure
The API structure consists of three layers as show below.

The REST library is linked to the C#.NET library that includes classes for the comms handler that does the low level
SSP communication with the connected ITL SSP devices.

Document Revision - v.1 ITL SDK Package Manual - 6

Application Example using the REST Interface

Application Example using the C#.NET Methods

Product Support
Product specific information such as FAQs, user manuals, test scripts or currency datasets can be found in the
support hub on the ITL website. A registered website account is required to access the information and files within
the support hub.

Document Revision - v.1 ITL SDK Package Manual - 7

Test Scripts
ITL have developed generic tests scripts for various products. The test scrpits are like a check list that cover basic
machine design requirements in environmental conditions, power requirements, mechanical integration and
software integration. The test scripts are also available in the support hub on the ITL website.

ITL SDK Package Version Convention
ITL_SDK_Package_vX.y.z

v = version

X = conceptional release

(1 = initial SSP source code examples, 2 = SSP source code examples grouped by product category, e.g. Banknote
Validator or Banknote Recyclers, 3 = introduction of high-level APIs)

y = major software release

(0 = initial C#.NET6, 1 = C#.NET8)

z = minor API feature updates or improvements

(0 = initial release)

For the full change history details please refer to the ChangeHistory.txt within the SDK Package Download.

Even for routine engineering companies ITL highly recommends to apply the test scripts to new machine
developments before field trial to minimise the risk of potential field issues.

Document Revision - v.1 ITL SDK Package Manual - 8

•
•
•
•

•
•

•

•
•
•

•

For Windows Applications

Contents
Description
Installing .NET 8 if required
Instructions on setting up the local server
Postman Collection

Globals Table (Environments tab)
Authenticate Request Body

Order of requests for initial setup

Description
This document will advise how to run the CSharp_RestAPI.exe on your local Microsoft Windows PC.

Installing .NET 8 if required

.NET Core 8 is required to run this API. To download, please navigate to the following link.

https://dotnet.microsoft.com/en-us/download/dotnet/8.0

Instructions on setting up the local server
Navigate to the CashDevice_RestAPI_Vx.x.x directory
Right click on the CSharp_RestAPI.exe and select to Run as administrator.
The local server will boot up showing you the URL and port.

Postman Collection
Add the Collection and Globals table to your Postman instance.

.NET Core 8.0 is required to run the .exe

Document Revision - v.1 ITL SDK Package Manual - 9

•
•

•

•

•
•
•

•

1.
2.

Globals Table (Environments tab)

bearerToken - Created and saved to the globals table upon sending the Authenticate request.
baseURL - Ensure the baseUrl uses the correct URL shown in the Terminal, in the below example http://
localhost:5000

deviceID - Received as part of the OpenConnection endpoint.

ComPort - Set the correct COM port for the connected validator. COM Port can be obtained from Windows
Device Manager.
Currency - Set the 3 character currency code for the connected validator.
SspAddress - Set the correct SSP Address for the connected device.
DownloadFilePath - Used to set the folder directory for the dataset/firmware file used in the StartDownload
request.

UpdateFileName - Used to set the filename used in the StartDownload request. This allows you to copy and
paste the filename into the globals table.

Authenticate Request Body

{
 "Username": "admin",
 "Password": "password"
}

Order of requests for initial setup
Authenticate
OpenConnection

The deviceID provided in the response should be used as a request parameter in subsequent

requests. This deviceID targets the specific device to receive SSP commands. For example, if your
computer is connected to an NV4000 via port COM17 and a Smart Coin System on COM4, the device IDs
would be NV4000-COM17 and SMART_COIN_SYSTEM-COM4 , respectively. To disable the acceptor

on NV4000, send a request to {{server_url}}/DisableAcceptor?deviceID=NV4000-COM17

Directory string uses double \.

This endpoint includes: InitialiseDevice -> OpenDevice -> ConnectDevice -> StartDevice.

Document Revision - v.1 ITL SDK Package Manual - 10

•
•
•
•
•
•
•

•
•
•

For Linux Applications

Contents
Introduction
Pre-Requisites
Download and install required resources
COM Port Configurations
Running the ITL Rest Server
Making REST request using curl
Making REST request using Postman

Introduction
The following describes how to run the ITL REST server using the CSharp_RestAPI.dll under Linux, make endpoint
calls to it and receive response data. There are many different Linux distributions available such as Ubuntu or
Debian. Hence, there are many different ways to make REST calls in Linux respectively how to get there. This
documentation has been compiled using an Oracle VirtualBox running Ubuntu 24.04.1 LTS.

Pre-Requisites
Linux distribution installed or running on a virtual machine
User account with sudo privileges
ITL cash handling device

Download and install required resources

Click on “Show Apps” on the bottom left and
open the “Terminal”

Document Revision - v.1 ITL SDK Package Manual - 11

Download and install latest distribution
packages

sudo apt-get install -y upgrade

Download and install the .NET8 SDK

sudo apt-get install -y dotnet-sdk-8.0

Download and install the .NET8 runtime

sudo apt-get install -y dotnet-runtime-8.0

Download the ITL SDK Package https://www.dropbox.com/scl/fo/ppbhpv6l1cbq7266ffzm8/
AAtGWIKWmv8EFjbBUzCQi3c?
rlkey=yiaancca9e3yowrob0qow1hf2&st=lt1hso2u&dl=0

COM Port Configurations

Connect an ITL cash handling device and add
the USB connection to the virtual machine

Give user permission to use tty COM port (a
restart of the Terminal may be required)

sudo usermod -a -G dialout $USER

Find out which COM port this has been assigned
to. Direct USB usually generates a COM port at /
dev/ttyACM0 and the IF17 generates COM port
at /dev/ttyUSB0. The command on the right
hand side will output the COM port. This will be
needed later for the OpenConnection REST
endpoint

sudo dmseg | grep tty

Running the ITL Rest Server

Go into the
CashDevice_RestAPI_V1.3.1_.NET_8.0 directory

cd /[PATH]/CashDevice_RestAPI_V1.3.1_.NET_8
.0

Run the CSharp_RestAPI.dll. This will then start
the ITL REST server listining on

http://localhost:5000
dotnet CSharp_RestAPI.dll

Document Revision - v.1 ITL SDK Package Manual - 12

Making REST request using curl

Open a new Terminal window

Establish a connection to the localhost on port
5000

curl -v localhost:5000

See also https://curl.se/docs/manpage.html

Request a Bearer Token for authorisation of
upcoming REST requests and output in the
Terminal window curl -v --json '{"Username": "admin",

"Password": "password"}' localhost:5000/
api/Users/Authenticate |jq

See also REST API - Authenticate

To output the Bearer Token into a .json file. This
can then be referenced to in upcoming curl
requests instead of copying and pasting the
bearer token into upcoming requests

curl -v --json '{"Username": "admin",
"Password": "password"}' localhost:5000/
api/Users/Authenticate |jq .> /[PATH]/
BearerToken.json

Document Revision - v.1 ITL SDK Package Manual - 13

Instead of writing the json body into the curl
request you can also reference to a .json file
within the curl request. Click on “Show Apps”
on the bottom left and open the Text Editor

Add the json body text into the text editor

Click on the settings gear, select “Document
Type”

Document Revision - v.1 ITL SDK Package Manual - 14

Type json into the search bar and select
“JSON”, close the Document Type

Click on the button with the 3 lines, select “Save
As”, give the file a name, chose a path where to
save the file and click on “Save”

Request a Bearer Token using a .json file

curl -v --json @/[PATH]/Authenticate.json
localhost:5000/api/Users/Authenticate | jq

Document Revision - v.1 ITL SDK Package Manual - 15

Generate a .json file for the OpenConnection
request in the same way as for the Bearer Token
above or download the example below. This is
an example for a Spectral Payout connected to
COM port ttyACM0, SSP address 0, default
encryption key (decimal), EUR5-500, all notes
enabled and routed to payout, enabled
acceptor and payout module with escrow mode
disabled as shown on the right.

{
 "ComPort": "/dev/ttyACM0",
 "SspAddress": 0,
 "LogFilePath": "/[PATH]/CashDevice.log",
 "EncKey": 81985526925837671,
 "SetInhibits": [
 { "Denomination": "500 EUR", "Inhibit":
false },
 { "Denomination": "1000 EUR", "Inhibit":
 false },
 { "Denomination": "2000 EUR", "Inhibit":
 false },
 { "Denomination": "5000 EUR", "Inhibit":
 false },
 { "Denomination": "10000 EUR",
"Inhibit": false },
 { "Denomination": "20000 EUR",
"Inhibit": false },
 { "Denomination": "50000 EUR",
"Inhibit": false }
],
 "SetRoutes": [
 { "Denomination": "500 EUR", "Route": 7
},
 { "Denomination": "1000 EUR", "Route":
7 },
 { "Denomination": "2000 EUR", "Route":
7 },
 { "Denomination": "5000 EUR", "Route":
7 },
 { "Denomination": "10000 EUR", "Route":
7 },
 { "Denomination": "20000 EUR", "Route":
7 },
 { "Denomination": "5000 EUR", "Route":
7 }
],
 "EnableAcceptor": true,
 "EnableAutoAcceptEscrow": true,
 "EnablePayout": true
}

See also REST API - OpenConnection

Send the OpenConnection request

curl -v -H "Authorization: Bearer [Bearer
Token]" --json @/[PATH]/
OpenConnectionSpectralPayout.json
localhost:5000/api/CashDevice/
OpenConnection | jq

Part of the response data is the “deviceID” that is required as
a parameter for further REST API requests

Document Revision - v.1 ITL SDK Package Manual - 16

Send GetDeviceStatus with “deviceID”
parameter

curl -v -H "Authorization: Bearer [Bearer
Token]" localhost:5000/api/CashDevice/
GetDeviceStatus?deviceID=SEPCTRAL_PAYOUT-/
dev/ttyACM0 | jq

See also REST API - GetDeviceStatus

Making REST request using Postman

Postman is available in Linux Ubuntu. Click on
the “App Center” icon on the left hand side,
search for “Postman” and install it. You will be
prompted to create an account or login to an
existing account online before the app can be
used

The only difference making REST request using
Postman in Linux compared to Windows is the
COM port reference in the OpenConnection
request json body. Instead of referencing the
COM port number Linux requires the path
where the USB driver file is stored

Example for Windows:

“ComPort”: “COM3”

Example for Linux connected via direct USB:

"ComPort": "/dev/ttyACM0"

Example for Linux connected via IF17:

"ComPort": "/dev/ttyUSB0"

Document Revision - v.1 ITL SDK Package Manual - 17

•
•
•
•
•
•

•

•

For Android Applications

Contents
Introduction
Pre-requisites
Download and install the required resources
Running the ITL REST Server
Sending REST Requests using API Tester
SSP Lower-Level Logging

Introduction
The following describes how to run the ITL REST server using the Android_REST_API_Vx.x.x.apk and make endpoint
calls to it and receive response data. There are many different Android versions available. This documentation has
been compiled using Android Version 12 and version 1.3.2 of the Android REST API.

Pre-requisites
Android Device, Android instance on a Virtual Machine or Emulator

ITL cash handling device

Download and install the required resources

Navigate to the following link to download
the latest SDK.

ITL SDK Package

Installing the Android_REST_API_Vx.x.x.apk

Navigate to the APK download and launch the file.

Select to CONTINUE on any warning
messages.

Select INSTALL to begin the process.

Select DONE once the install completes.

Minimum Android Version 10 (API 29)

Document Revision - v.1 ITL SDK Package Manual - 18

Download and install an API Tester like
the following example:

API Tester

Installing the API Tester.

Navigate to the APK download and launch the file.

If sideloading the APK, select to
CONTINUE on any warning messages.

Select INSTALL to begin the process.

Select OPEN to launch the application.

Import the Collection to the API Tester.

Select the + icon.

Document Revision - v.1 ITL SDK Package Manual - 19

Select Collection.

Select File.

Navigate to the saved collection file Android-API-Collection.json and select the file.

Wait until the import completes.

Document Revision - v.1 ITL SDK Package Manual - 20

Once the import has completed you will
find the collection list on the left of the API
Tester app.

Running the ITL REST Server

Launch the Android REST API application

Document Revision - v.1 ITL SDK Package Manual - 21

The server will launch and begin listening
on http://127.0.0.1:5000/api/CashDevice

The Android REST API application must remain active at all times. Closing the application will stop the API from
communicating between your software and the cash device. A fix has been implemented from version 1.3.2 to
ensure the server remains active until explicitly closed, however some Android versions can pause or stop apps
running in the background e.g. switching between the server app and the API Testing app. Ensure your Android
version can allow apps to remain active in the background.

Sending REST Requests using API Tester

Set the baseURL in the Variables table.

To access the Variables table, select the 3
dots contained in the circle to the right of
the search bar.

REST requests are case sensitive.
Ensure upper case letters are
used where advised.

Document Revision - v.1 ITL SDK Package Manual - 22

Select Variables.

Ensure the correct baseUrl is set in the
variables table.

http://127.0.0.1:5000/api

Select Done to update the table and return
to the request list.

Request a Bearer Token for authorisation
of upcoming REST requests using the
Authenticate request.

Select the Authenticate request and select
the play button from the top right to send
the request.

Copy the Bearer Token to the Variables
table for future requests.

Highlight the Bearer Token and select
Copy.

Paste the Bearer Token into the token
value field of the variables table.

Document Revision - v.1 ITL SDK Package Manual - 23

Select Done to update the table and return
to the request list.

Send the GetConnectedUSBDevices
request to obtain the correct Port.

Navigate to the Post Data for the
OpenConnection request.

Update the Post Data to the correct Port
returned for the GetConnectedUSBDevices
request.

Send the OpenConnection request once the Post Data has been updated. Please refer to the OpenConnection
details for further information on the full Post Data body.

Document Revision - v.1 ITL SDK Package Manual - 24

Update the deviceID in the variables table.

The OpenConnection request will return
the correct deviceID to use on subsequent
requests.

Save the deviceID to the variables table.

Your validator will be enabled and ready to accept currency if the below parameters of the OpenConnection
request are set to true.

 "EnableAcceptor": true,
 "EnablePayout": true

SSP Lower-Level Logging

Android will store the Lower level SSP logs from version 1.3.2.

By default, logs are stored at the following path:
/storage/emulated/0/Documents/ITL_SSP_logs/{default_log_name}.log

If you wish to use a custom log location, simply specify it in the JSON request using the following format:
"LogFilePath": "{directory}/{log_file_name}.log"

To access the default logs on your Android device, navigate to:
Files -> Internal Storage -> Documents

Available from version 1.3.2

Document Revision - v.1 ITL SDK Package Manual - 25

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Cash Device REST API

Overview
This documentation explains how to use the REST API server to establish communication between the ITL cash
devices and software applications. These applications can run on various operating systems, such as Linux, and use
different programming languages, such as C++, Java, etc.

API Endpoints
REST API - Authenticate
Android REST API - GetConnectedUSBDevices
REST API - UpdateCredentials
REST API - OpenConnection
REST API - DisconnectDevice
REST API - StartDevice
REST API - StopDevice
REST API - LogRawPackets
REST API - GetCompleteCashDevice
REST API - GetDeviceStatus
REST API - GetCounters
REST API - GetAllLevels
REST API - GetCurrencyAssignment
REST API - SetDenominationLevel
REST API - EnablePayout
REST API - EnablePayoutDevice
REST API - EnablePayoutDeviceWithByte
REST API - DisablePayout
REST API - EnableAcceptor
REST API - DisableAcceptor
REST API - SetAutoAccept
REST API - AcceptFromEscrow
REST API - ReturnFromEscrow
REST API - SetDenominationInhibits
REST API - SetDenominationInhibitByIndex
REST API - SetDenominationInhibit
REST API - SetDenominationRoute
REST API - GetBarcodeReaderConfiguration
REST API - SetBarcodeReaderConfiguration
REST API - GetBarcodeInhibit
REST API - SetBarcodeInhibit
REST API - GetBarcodeData
REST API - DispenseValue
REST API - PayoutByDenomination
REST API - PayoutMultipleDenominations
REST API - Float
REST API - SetCashboxPayoutLimit
REST API - SmartEmpty
REST API - SendCustomCommand
REST API - EnableCoinMechOrFeeder
REST API - ResetDevice
REST API - HaltPayout
REST API - GetRCMode
REST API - Replenish
REST API - RefillMode
REST API - KeyExchangeLimit32bit
REST API - GetHopperOptions
REST API - SetHopperOptions

Document Revision - v.1 ITL SDK Package Manual - 26

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REST API - GetGlobalErrorCode
REST API - GetServiceInformation
REST API - GetServiceInformationForModule
REST API - SetServiceInformationMaintenanceReset
REST API - SetNoPayinCount
REST API - Purge
REST API - PurgeDevice
REST API - PurgeDeviceHopper
REST API - CoinStir
REST API - CoinStirWithMode
REST API - GetCoinAcceptance
REST API - GetCoinsExit
REST API - SetRealTimeClock
REST API - GetRealTimeClock
REST API - SetCashboxLevels
REST API - ClearCashboxLevels
REST API - GetCashboxLevels
REST API - SetSorterRoute
REST API - GetSorterRouteAssignment
REST API - SetPayoutLimit
REST API - GetPayoutCount
REST API - SetTwInMode
REST API - ExtendedGetDatasetVersion
REST API - ExtendedGetFirmwareVersion
REST API - comPortReadError
REST API - DeviceState_StartupReady
REST API - GetLifterStatus
REST API - GetLastRejectCode
REST API - DeviceErrorLimpMode
REST API - DeviceStateLimpMode
REST API - StartDownload
REST API - GetDownloadStatus

Document Revision - v.1 ITL SDK Package Manual - 27

REST API - Authenticate

Description
Creates a Bearer Token to be used as Authorisation on all subsequent Requests for security.

Default Credentials

Username: admin
Password: password

Endpoint Authenticate

Method POST

URL {server_url}/api/Users/Authenticate

Parameters None

Authorisatio
n

N/A

Body

{
 "Username": "admin",
 "Password": "password"
}

Responses

Status Body Notes

200

{
 "token": "eyJhb....."
}

OK: Provides the Bearer Token to be used
for the Authorisation of subsequent
requests.

400

{
 "message": "Username or password
is incorrect"
}

Bad Request: Incorrect Credentials.

N/A Error: connect ECONNREFUSED {server_url} Unable to connect to REST Server.

This must be sent first to create the Bearer Token between the software and the REST Server. Only
subsequent requests using the correct Bearer Token will be accepted.

Document Revision - v.1 ITL SDK Package Manual - 28

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/Users/Authenticate", Method.Post);
request.AddHeader("Content-Type", "application/json");
var body = @"{
" + "\n" +
@" ""Username"": ""admin"",
" + "\n" +
@" ""Password"": ""password""
" + "\n" +
@"}";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/Users/Authenticate',
 'headers': {
 'Content-Type': 'application/json'
 },
 body: JSON.stringify({
 "Username": "admin",
 "Password": "password"
 })

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import http.client
import json

conn = http.client.HTTPSConnection("localhost", 5000)
payload = json.dumps({
 "Username": "admin",
 "Password": "password"
})
headers = {
 'Content-Type': 'application/json'
}
conn.request("POST", "/api/Users/Authenticate", payload, headers)

Document Revision - v.1 ITL SDK Package Manual - 29

res = conn.getresponse()
data = res.read()
print(data.decode("utf-8"))

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"Username\": \"admin\",
\r\n \"Password\": \"password\"\r\n}");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/Users/Authenticate")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 30

Android REST API - GetConnectedUSBDevices

Description
Returns the port address for the connected device.

Endpoint GetConnectedUSBDevices

Method Get

URL {server_url}/api/CashDevice/GetConnectedUSBDevices

Parameters None

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

[
 {
 "Port": 0,
 "DeviceName": "NV200 Spectral",
 "VendorId": 6428,
 "ProductId": 16644
 }
]

OK: Provides the port details

Code Examples

C#

var options = new RestClientOptions("http://127.0.0.1:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetConnectedUSBDevices", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

This request is used for Android only.

Document Revision - v.1 ITL SDK Package Manual - 31

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://127.0.0.1:5000/api/CashDevice/GetConnectedUSBDevices',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://127.0.0.1:5000/api/CashDevice/GetConnectedUSBDevices"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://127.0.0.1:5000/api/CashDevice/GetConnectedUSBDevices")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 32

REST API - UpdateCredentials

Description
Used to change the Username and Password for the Authenticate request.

Default Credentials

Username: admin
Password: password

Endpoint Authenticate

Method POST

URL {server_url}/api/Users/UpdateCredentials

Parameters None

Authorisatio
n

Bearer Token

Body

{
 "CurrentUsername": "admin",
 "CurrentPassword": "password",
 "NewUsername": "<new username>",
 "NewPassword": "<new password>"
}

Responses

Status Body Notes

200

{
 "message": "Credentials updated
successfully"
}

OK: Confirms the credentials have been
updated.

401 Old username or password is incorrect Unauthorised: Incorrect Credentials.

You must have Authenticated using the current credentials before updating to the new credentials.

Document Revision - v.1 ITL SDK Package Manual - 33

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/Users/UpdateCredentials", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{
" + "\n" +
@" ""OldUsername"": ""admin"",
" + "\n" +
@" ""OldPassword"": ""password"",
" + "\n" +
@" ""NewUsername"": ""new_username"",
" + "\n" +
@" ""NewPassword"": ""new_password""
" + "\n" +
@"}";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/Users/UpdateCredentials',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "OldUsername": "admin",
 "OldPassword": "password",
 "NewUsername": "new_username",
 "NewPassword": "new_password"
 })

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import http.client
import json

conn = http.client.HTTPSConnection("localhost", 5000)

Document Revision - v.1 ITL SDK Package Manual - 34

payload = json.dumps({
 "OldUsername": "admin",
 "OldPassword": "password",
 "NewUsername": "new_username",
 "NewPassword": "new_password"
})
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}
conn.request("POST", "/api/Users/UpdateCredentials", payload, headers)
res = conn.getresponse()
data = res.read()
print(data.decode("utf-8"))

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"OldUsername\": \"admin\",
\r\n \"OldPassword\": \"password\",\r\n \"NewUsername\": \"new_username\",\r\n
\"NewPassword\": \"new_password\"\r\n}");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/Users/UpdateCredentials")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 35

•

•

REST API - OpenConnection

Description
The /OpenConnection endpoint streamlines the process of initiating communication with cash-handling
devices by configuring essential connection and device-specific settings. This endpoint simplifies the
previous multi-step process for establishing a connection to an SSP device. Previously, the steps included:
InitialiseDevice -> OpenDevice -> ConnectDevice -> StartDevice. With /OpenConnection, these
operations are automated, enabling the device to be ready for cash operations such as payout and note
acceptance.
The structure of the request body and the JSON response varies based on the device model in use. For
example, NV4000 requires a distinct request format and includes a different set of fields in its JSON response
compared to Smart Coin System.

Endpoint OpenConnection

Method POST

URL {server_url}/api/CashDevice/OpenConnection

Parameters None

Authorisatio
n

Bearer Token

Body Please see the example below for Spectral Payout:

{
 "ComPort": "{{ComPort}}",
 "SspAddress": {{SspAddress}},
 "LogFilePath": "C:\\Temp\\Cash_Device_Log.log",
 "SetInhibits": [
 { "Denomination": "2000 {{Currency}}", "Inhibit": true },
 { "Denomination": "5000 {{Currency}}", "Inhibit": true }
],
 "SetRoutes": [
 { "Denomination": "500 {{Currency}}", "Route": 7 },
 { "Denomination": "1000 {{Currency}}", "Route": 7 }
],
 "EnableAcceptor": true,
 "EnableAutoAcceptEscrow": true,
 "EnablePayout": true
}

The deviceID provided in the response should be used as a request parameter in subsequent

requests. This deviceID targets the specific device to receive SSP commands. For example, if your
computer is connected to an NV4000 via port COM17 and a Smart Coin System on COM4, the device IDs
would be NV4000-COM17 and SMART_COIN_SYSTEM-COM4 , respectively. To disable the acceptor

on NV4000, send a request to {{server_url}}/DisableAcceptor?deviceID=NV4000-COM17

Document Revision - v.1 ITL SDK Package Manual - 36

•
•
•
•
•
•
•

•

Request Body Structure

Field Device
Type

Example Comments

ComPort Any “ComPort”: “COM5”

SspAddress Any “SspAddress”: 0

EncKey Any “EncKey”: 81985526925837671 Custom eSSP Key

LogFilePath Any "LogFilePath": "C:\\Temp\
\Cash_Device_Log.log"

SetInhibits Any "SetInhibits":
[
{ "Denomination": "2000 GBP",
"Inhibit": true },
{ "Denomination": "5000 GBP",
"Inhibit": false }
]

SetRoutes Any "SetRoutes":
[
{ "Denomination": "500 GBP",
"Route": 7 },
{ "Denomination": "1000 GBP",
"Route": 0 }
]

Cashbox = 0
Recycler = 1
Recycler 1 (NV4000) = 2
Recycler 2 (NV4000) = 3
Recycler 3 (NV4000) = 4
Recycler 4 (NV4000) = 5
Replenishment Cassette
(NV4000) = 6
Payout = 7

SetCoinMechInh
ibits

Coin
Validator

"SetCoinMechInhibits":
{
"ValueCountryCodes": ["1 USD","5
USD"],
"Inhibit": true
}

See Command 0x40 - Set Coin Mech
Inhibits

SetHopperOptio
ns

Coin
Hopper

"SetHopperOptions":
{
"Reg0": 4,
"Reg1": 0
}

See Command 0x50 - Set Options
(Coin)

SetCashBoxPayo
utLimit

Any "SetCashBoxPayoutLimit":
[100,0,50,30,20,5,0]

See Command 0x4E - Set Cashbox
Payout Limit (Coin) or Command 0x4E
- Set Cashbox Payout Limit (Note)

SetTwinMode TSCS "SetTwinMode":0 See Sub Command 0x05 0x87 - Set
Twin Mode

Document Revision - v.1 ITL SDK Package Manual - 37

Field Device
Type

Example Comments

SetFeederRoute
s

TSCS "SetFeederRoutes":
[
{ "Denomination": "1 USD", "Route":
0 },
{ "Denomination": "25 USD",
"Route": 0 },
{ "Denomination": "100 USD",
"Route": 0 }
]

See Sub Command 0x05 0x85 -
Channel Set Route

EnableAcceptor Any "EnableAcceptor": true

EnableAutoAcce
ptEscrow

Note
Validator

"EnableAutoAcceptEscrow": true Automatically accept a note held in
Escrow.

EnablePayout Note
Validator

"EnablePayout": true

Document Revision - v.1 ITL SDK Package Manual - 38

Responses

Status Body Notes

200

{
 "deviceID": "SPECTRAL_DEVICE-
COM18",
 "isOpen": true,
 "deviceModel": "SPECTRAL_DEVICE",
 "sspProtocolVersion": 7,
 "deviceError": "NONE",
 "firmware": "NVS2004301038000",
 "dataset": "GBP01056",
 "validatorSerialNumber":
"4891655",
 "payoutModuleSerialNumber":
"5175198",
 "validatorRevision": "7.10",
 "payoutModuleRevision": "1.00",
 "realTimeClock": "Successfully
set real time clock to 28/10/2024
16:24:38.",
 "allLevels": [
 {
 "countryCode": "GBP",
 "value": 500,
 "stored": 0
 },
 {
 "countryCode": "GBP",
 "value": 1000,
 "stored": 0
 },
 {
 "countryCode": "GBP",
 "value": 2000,
 "stored": 0
 },
 {
 "countryCode": "GBP",
 "value": 5000,
 "stored": 0
 }
],
 "counters": "Number of counters
in set: 5\nStacked: 999\nStored:
2\nDispensed: 0\nTransferred to
stack: 2\nRejected: 258\n",
 "inhibits": "SUCCESS: 2000 GBP
INHIBITED.\nSUCCESS: 5000 GBP
INHIBITED.\n",
 "routes": "SUCCESS: Set route for
500 GBP to PAYOUT.\nSUCCESS: Set
route for 1000 GBP to PAYOUT.\n",
 "acceptorEnabled": true,
 "autoAcceptEscrowEnabled": true,
 "payoutEnabled": true

OK: Successfully retrieved device
information and configured essential
connection and device-specific settings.

Document Revision - v.1 ITL SDK Package Manual - 39

Status Body Notes

}

400

{
 "deviceID": "",
 "openResult": "PORT_ERROR",
 "error": "Failed to open device."
}

Bad Request: Port Error

500

{
 "DeviceID": "deviceID_value",
 "Error": "Error opening cash
device: error_message"
}

Internal Server Error: An error occurred
while attempting connection.

N/A Error: connect ECONNREFUSED {server_url} Unable to connect to REST Server.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/OpenConnection", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{
" + "\n" +
@" ""ComPort"": ""COM5"",
" + "\n" +
@" ""SspAddress"": 0,
" + "\n" +
@" ""LogFilePath"": ""C:\\Temp\\Cash_Device_Log.log"",
" + "\n" +
@" ""EncKey"": 81985526925837671, " + "\n" +
@" ""SetInhibits"": [
" + "\n" +
@" { ""Denomination"": ""2000 GBP"", ""Inhibit"": true },
" + "\n" +
@" { ""Denomination"": ""5000 GBP"", ""Inhibit"": true }
" + "\n" +
@"],
" + "\n" +
@" ""SetRoutes"": [
" + "\n" +
@" { ""Denomination"": ""500 GBP"", ""Route"": 7 },
" + "\n" +

Document Revision - v.1 ITL SDK Package Manual - 40

@" { ""Denomination"": ""1000 GBP"", ""Route"": 7 }
" + "\n" +
@"],
" + "\n" +
@" ""EnableAcceptor"": true,
" + "\n" +
@" ""EnableAutoAcceptEscrow"": true,
" + "\n" +
@" ""EnablePayout"": true
" + "\n" +
@"}
" + "\n" +
@"";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/OpenConnection',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "ComPort": "COM5",
 "SspAddress": 0,
 "LogFilePath": "C:\\Temp\\Cash_Device_Log.log",
 "EncKey": 81985526925837660,
 "SetInhibits": [
 {
 "Denomination": "2000 GBP",
 "Inhibit": true
 },
 {
 "Denomination": "5000 GBP",
 "Inhibit": true
 }
],
 "SetRoutes": [
 {
 "Denomination": "500 GBP",
 "Route": 7
 },
 {
 "Denomination": "1000 GBP",
 "Route": 7
 }
],
 "EnableAcceptor": true,
 "EnableAutoAcceptEscrow": true,
 "EnablePayout": true
 })

};
request(options, function (error, response) {

Document Revision - v.1 ITL SDK Package Manual - 41

 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/OpenConnection"

payload = json.dumps({
 "ComPort": "COM5",
 "SspAddress": 0,
 "LogFilePath": "C:\\Temp\\Cash_Device_Log.log",
 "EncKey": 81985526925837660,
 "SetInhibits": [
 {
 "Denomination": "2000 GBP",
 "Inhibit": True
 },
 {
 "Denomination": "5000 GBP",
 "Inhibit": True
 }
],
 "SetRoutes": [
 {
 "Denomination": "500 GBP",
 "Route": 7
 },
 {
 "Denomination": "1000 GBP",
 "Route": 7
 }
],
 "EnableAcceptor": True,
 "EnableAutoAcceptEscrow": True,
 "EnablePayout": True
})
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"ComPort\": \"COM5\",\r\n
\"SspAddress\": 0,\r\n \"LogFilePath\": \"C:\\\\Temp\\\\Cash_Device_Log.log\",\r\n
\"EncKey\": 81985526925837671, \n \"SetInhibits\": [\r\n { \"Denomination\":
\"2000 GBP\", \"Inhibit\": true },\r\n { \"Denomination\": \"5000 GBP\",

Document Revision - v.1 ITL SDK Package Manual - 42

\"Inhibit\": true }\r\n],\r\n \"SetRoutes\": [\r\n { \"Denomination\": \"500
GBP\", \"Route\": 7 },\r\n { \"Denomination\": \"1000 GBP\", \"Route\": 7 }
\r\n],\r\n \"EnableAcceptor\": true,\r\n \"EnableAutoAcceptEscrow\": true,\r\n
\"EnablePayout\": true\r\n}\r\n");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/OpenConnection")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 43

•

REST API - DisconnectDevice

Description
Sets the device state to not connected and closes the communication port and threads.

Endpoint DisconnectDevice

Method POST

URL {server_url}/api/CashDevice/DisconnectDevice

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

NV200S: Device disconnected and
cleaned up successfully.

OK: If the device disconnected successfully.

404

Device with ID NV200 not found.

Not Found: Device ID Incorrect.

500 Internal Server Error: If there is an error
disconnecting the device.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/DisconnectDevice?deviceID=NV200S",
Method.Post);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 44

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/DisconnectDevice?deviceID=NV200S',
 'headers': {
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import http.client

conn = http.client.HTTPSConnection("localhost", 5000)
payload = ''
headers = {}
conn.request("POST", "/api/CashDevice/DisconnectDevice?deviceID=NV200S", payload,
headers)
res = conn.getresponse()
data = res.read()
print(data.decode("utf-8"))

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/DisconnectDevice?deviceID=NV200S")
 .method("POST", body)
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 45

•

REST API - StartDevice

Description
Creates a new thread to ‘run’ with an SSP device. The thread is essentially a state machine which runs through the
some initial setup of the device and retrieving information from it and then enters a normal ‘run’ routine, polling
the device for any new events.

Endpoint StartDevice

Method POST

URL {server_url}/api/CashDevice/StartDevice

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

NV200S: Device started successfully.

OK: If the device started successfully.

500 Internal Server Error: If there is an error
starting the device.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/StartDevice?deviceID=NV200S",
Method.Post);
request.AddHeader("Authorization", "Bearer eyJhb.....");

Need to send “ConnectDevice” request before sending “StartDevice”.

Document Revision - v.1 ITL SDK Package Manual - 46

RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/StartDevice?deviceID=NV200S',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import http.client

conn = http.client.HTTPSConnection("localhost", 5000)
payload = ''
headers = {
 'Authorization': 'Bearer eyJhb.....'
}
conn.request("POST", "/api/CashDevice/StartDevice?deviceID=NV200S", payload, headers)
res = conn.getresponse()
data = res.read()
print(data.decode("utf-8"))

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/StartDevice?deviceID=NV200S")
 .method("POST", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 47

•

REST API - StopDevice

Description
Stops any running cash device threads, but does not close the COM port

Endpoint StopDevice

Method POST

URL {server_url}/api/CashDevice/StopDevice

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

NV200S: Device stopped successfully.

OK: If the device stopped successfully.

500 Internal Server Error: If there is an error
stopping the device.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/StopDevice?deviceID=NV200S",
Method.Post);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {

Document Revision - v.1 ITL SDK Package Manual - 48

 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/StopDevice?deviceID=NV200S',
 'headers': {
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import http.client

conn = http.client.HTTPSConnection("localhost", 5000)
payload = ''
headers = {}
conn.request("POST", "/api/CashDevice/StopDevice?deviceID=NV200S", payload, headers)
res = conn.getresponse()
data = res.read()
print(data.decode("utf-8"))

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/StopDevice?deviceID=NV200S")
 .method("POST", body)
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 49

•

REST API - LogRawPackets

Description
Takes rawPacketsOptionSelected by default as true and flags the SSP to log the raw packet data.

Endpoint LogRawPackets

Method POST

URL {server_url}/api/CashDevice/LogRawPackets

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body bool rawPacketsOptionSelected

true

Responses

Status Body Notes

200

NV200S: Raw packet logging has been
enabled.

OK: If the raw packet logging was set
successfully.

400 Bad Request: If there is an error setting raw
packet logging.

404

NV200S: Cash device not found.

Not Found: The cashDevice has not been
created.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);

Document Revision - v.1 ITL SDK Package Manual - 50

var request = new RestRequest("/api/CashDevice/LogRawPackets?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"true";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/LogRawPackets?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify(true)

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/LogRawPackets?deviceID=SPECTRAL_PAYOUT-
COM5"

payload = json.dumps(True)
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "true");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/LogRawPackets?deviceID=SPECTRAL_PAYOUT-
COM5")

Document Revision - v.1 ITL SDK Package Manual - 51

 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 52

•
•

•

REST API - GetCompleteCashDevice

Description
Returns all public read-only variables of the CashDevice object with their corresponding values.
Refer to the following table for all available Public Read-Only Variables of CashDevice class

Endpoint GetCompleteCashDevice

Method GET

URL {server_url}/api/CashDevice/GetCompleteCashDevice

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Public Read-Only Variables of CashDevice class Table

Variable Name Description

comPort The communication port name used by the device.

deviceModel The model of the device.

deviceError The current error status of the device.

isOpen Indicates whether the device is open.

isDownloading Indicates whether a download operation is in progress.

firmware The firmware version of the device.

extendedFirmware The extended firmware version of the device.

dataset The dataset version of the device.

extendedDataset The extended dataset version of the device.

mainSerialNumber The main serial number of the device.

recycler1SerialNumber The serial number of the first recycler.

recycler2SerialNumber The serial number of the second recycler.

Document Revision - v.1 ITL SDK Package Manual - 53

Variable Name Description

recycler3SerialNumber The serial number of the third recycler.

recycler4SerialNumber The serial number of the fourth recycler.

interfaceSerialNumber The serial number of the interface module.

dockSerialNumber The serial number of the docking station.

replenishmentCassetteSerialNumber The serial number of the replenishment cassette.

conveyorSerialNumber The serial number of the conveyor module.

coinFeederSerialNumber The serial number of the coin feeder module.

secondaryHopperSerialNumber The serial number of the secondary hopper.

payoutModuleSerialNumber The serial number of the payout module.

coinLifterSerialNumber The serial number of the coin lifter module.

mainSerialNumberValid Indicates whether the main serial number is valid.

recycler1SerialNumberValid Indicates whether the serial number of the first recycler is
valid.

recycler2SerialNumberValid Indicates whether the serial number of the second recycler
is valid.

recycler3SerialNumberValid Indicates whether the serial number of the third recycler is
valid.

recycler4SerialNumberValid Indicates whether the serial number of the fourth recycler
is valid.

interfaceSerialNumberValid Indicates whether the serial number of the interface
module is valid.

dockSerialNumberValid Indicates whether the serial number of the docking station
is valid.

replenishmentCassetteSerialNumberValid Indicates whether the serial number of the replenishment
cassette is valid.

conveyorSerialNumberValid Indicates whether the serial number of the conveyor
module is valid.

Document Revision - v.1 ITL SDK Package Manual - 54

Variable Name Description

coinFeederSerialNumberValid Indicates whether the serial number of the coin feeder
module is valid.

secondaryHopperSerialNumberValid Indicates whether the serial number of the secondary
hopper is valid.

payoutModuleSerialNumberValid Indicates whether the serial number of the payout module
is valid.

coinLifterSerialNumberValid Indicates whether the serial number of the coin lifter
module is valid.

buildRevisionString The build revision string of the device.

initialMainBuildRevision The initial main build revision of the device.

mainBuildRevisionString The main build revision string of the device.

coinFeederBuildRevisionString The build revision string of the coin feeder.

seondaryHopperBuildRevisionString The build revision string of the secondary hopper.

coinLifterBuildRevisionString The build revision string of the coin lifter.

payoutModuleRevisionString The build revision string of the payout module.

primaryHopperAsciiTypeString The ASCII type string of the primary hopper.

coinFeederAsciiTypeString The ASCII type string of the coin feeder.

majorBuildRevision The major build revision number.

minorBuildRevision The minor build revision number.

reg_0 The value of register 0.

reg_1 The value of register 1.

reg_0_hex_string The hexadecimal string representation of register 0.

reg_1_hex_string The hexadecimal string representation of register 1.

globalErrorCode_0 The global error code 0.

globalErrorCode_1 The global error code 1.

Document Revision - v.1 ITL SDK Package Manual - 55

Variable Name Description

unit_info_retrieved Indicates whether the unit information was retrieved.

lifterConnected Indicates whether the lifter is connected.

lifterOptoClear Indicates whether the lifter opto is clear.

lifterJammed Indicates whether the lifter is jammed.

lastGetLevelsSuccessful Indicates whether the last get levels operation was
successful.

service_information_string The service information string.

noPayinCount The number of no payin counts.

coinAcceptance_string The coin acceptance string.

counters_string The counters string.

coins_payout_request The number of coins requested for payout.

coins_seen_at_exit_sensor The number of coins seen at the exit sensor.

real_time_clock_string The real-time clock string.

cashbox_levels_string The cashbox levels string.

payout_count The payout count.

commandFailedDetailsString The details string for command failures.

maintenanceRequiredDetailsString The details string for maintenance required.

lifterEventString The lifter event string.

rejectCategory The reject category.

error_during_payout_details_string The details string for errors during payout.

ticketStatus The status of the barcode ticket.

barcode_ascii_data The ASCII data of the barcode.

barCodeHardwareStatus The hardware status of the barcode reader.

Document Revision - v.1 ITL SDK Package Manual - 56

Variable Name Description

readersEnabled The enabled status of the barcode readers.

barCodeFormat The format of the barcode.

numberOfCharacters The number of characters in the barcode.

barCodeInhibit The inhibit status of the barcode reader.

RC_CurrentMode The current mode of the replenishment cassette.

currentRC_PayoutValue The current payout value of the replenishment cassette.

RC_DenominationForPayout The denomination for payout in the replenishment
cassette.

unknown_stored_in_cashbox The number of unknown items stored in the cashbox.

sspProtocolVersion The SSP protocol version.

downloadStatus The download status.

cashDeviceModules An array of cash device modules.

dispenseState The dispense transaction state.

noteInEscrow Indicates whether there is a note in escrow.

isMultiCurrency Indicates whether the device supports multiple currencies.

Document Revision - v.1 ITL SDK Package Manual - 57

Responses

Status Body Notes

200

SPECTRAL_PAYOUT-COM5: {
 "comPort": "COM5",
 "deviceModel":
"SPECTRAL_DEVICE",
 "deviceError": "NONE",
 "isOpen": true,
 "isDownloading": false,
 "firmware": "NVS2004301038000",
 "extendedFirmware": null,
 "dataset": "GBP07056",
 "extendedDataset": null,
 "mainSerialNumber": 6331574,
 "recycler1SerialNumber": 0,
 "recycler2SerialNumber": 0,
 "recycler3SerialNumber": 0,
 "recycler4SerialNumber": 0,
 "interfaceSerialNumber": 0,
 "dockSerialNumber": 0,

"replenishmentCassetteSerialNumb
er": 0,
 "conveyorSerialNumber": 0,
 "coinFeederSerialNumber": 0,
 "secondaryHopperSerialNumber":
0,
 "payoutModuleSerialNumber":
5785286,
 "coinLifterSerialNumber": 0,
 "mainSerialNumberValid": false,
 "recycler1SerialNumberValid":
false,
 "recycler2SerialNumberValid":
false,
 "recycler3SerialNumberValid":
false,
 "recycler4SerialNumberValid":
false,
 "interfaceSerialNumberValid":
false,
 "dockSerialNumberValid": false,

"replenishmentCassetteSerialNumb
erValid": false,
 "conveyorSerialNumberValid":
false,
 "coinFeederSerialNumberValid":
false,

"secondaryHopperSerialNumberVali
d": false,

"payoutModuleSerialNumberValid":
true,

OK: Returns the complete information
of the cash device.

Document Revision - v.1 ITL SDK Package Manual - 58

Status Body Notes

 "coinLifterSerialNumberValid":
false,
 "buildRevisionString": "1.01",
 "initialMainBuildRevision": 0,
 "mainBuildRevisionString":
"9.10",

"coinFeederBuildRevisionString":
null,

"seondaryHopperBuildRevisionStri
ng": null,

"coinLifterBuildRevisionString":
null,
 "payoutModuleRevisionString":
"1.01",
 "primaryHopperAsciiTypeString":
 null,
 "coinFeederAsciiTypeString":
null,
 "majorBuildRevision": 1,
 "minorBuildRevision": 1,
 "reg_0": 0,
 "reg_1": 0,
 "reg_0_hex_string": null,
 "reg_1_hex_string": null,
 "globalErrorCode_0": 0,
 "globalErrorCode_1": 0,
 "unit_info_retrieved": true,
 "lifterConnected": false,
 "lifterOptoClear": false,
 "lifterJammed": false,
 "lastGetLevelsSuccessful":
true,
 "service_information_string":
null,
 "noPayinCount": 0,
 "coinAcceptance_string": null,
 "counters_string": "Number of
counters in set: 5\nStacked:
261\nStored: 42\nDispensed:
30\nTransferred to stack:
11\nRejected: 26\n",
 "coins_payout_request": 0,
 "coins_seen_at_exit_sensor": 0,
 "real_time_clock_string": null,
 "cashbox_levels_string": null,
 "payout_count": 0,
 "commandFailedDetailsString":
null,

"maintenanceRequiredDetailsStrin
g": null,
 "lifterEventString": null,
 "rejectCategory": null,

Document Revision - v.1 ITL SDK Package Manual - 59

Status Body Notes

"error_during_payout_details_str
ing": null,
 "ticketStatus": null,
 "barcode_ascii_data": null,
 "barCodeHardwareStatus": null,
 "readersEnabled": null,
 "barCodeFormat": null,
 "numberOfCharacters": null,
 "barCodeInhibit": null,
 "nv22SpectralDevice": false,
 "enablePayoutDeviceError":
null,
 "recyclerCountersString": null,
 "RC_CurrentMode":
"RC_MODE_REPLENISH",
 "currentRC_PayoutValue": null,
 "RC_DenominationForPayout":
null,
 "unknown_stored_in_cashbox": 0,
 "sspProtocolVersion": 7,
 "downloadStatus": {
 "State": "IDLE",
 "CurrentRamBlock": 0,
 "TotalRamBlocks": 0,
 "CurrentDownloadBlock": 0,
 "TotalDownloadBlocks": 0
 },
 "cashDeviceModules": null,
 "dispenseState": "COMPLETED",
 "isMultiCurrency": false,
 "noteInEscrow": false,
 "currencyAssignment": [
 {
 "Type": "BANKNOTE",
 "ValueCountryCode": {
 "Value": 500,
 "CountryCode": "GBP",
 "Fraud_Attempt_Value": -1,

"Calibration_Failed_Value": -1
 },
 "Value": 500,
 "CountryCode": "GBP",
 "IsInhibited": false,
 "IsRecyclable": true,
 "AcceptRoute": "PAYOUT",
 "Stored": 0,
 "StoredInCashbox": 0,
 "Channel": 1
 },
 {
 "Type": "BANKNOTE",
 "ValueCountryCode": {
 "Value": 1000,
 "CountryCode": "GBP",
 "Fraud_Attempt_Value": -1,

Document Revision - v.1 ITL SDK Package Manual - 60

Status Body Notes

"Calibration_Failed_Value": -1
 },
 "Value": 1000,
 "CountryCode": "GBP",
 "IsInhibited": false,
 "IsRecyclable": true,
 "AcceptRoute": "PAYOUT",
 "Stored": 0,
 "StoredInCashbox": 0,
 "Channel": 2
 },
 {
 "Type": "BANKNOTE",
 "ValueCountryCode": {
 "Value": 2000,
 "CountryCode": "GBP",
 "Fraud_Attempt_Value": -1,

"Calibration_Failed_Value": -1
 },
 "Value": 2000,
 "CountryCode": "GBP",
 "IsInhibited": true,
 "IsRecyclable": true,
 "AcceptRoute": "CASHBOX",
 "Stored": 0,
 "StoredInCashbox": 0,
 "Channel": 3
 },
 {
 "Type": "BANKNOTE",
 "ValueCountryCode": {
 "Value": 5000,
 "CountryCode": "GBP",
 "Fraud_Attempt_Value": -1,

"Calibration_Failed_Value": -1
 },
 "Value": 5000,
 "CountryCode": "GBP",
 "IsInhibited": true,
 "IsRecyclable": true,
 "AcceptRoute": "CASHBOX",
 "Stored": 0,
 "StoredInCashbox": 0,
 "Channel": 4
 }
],
 "sorterRouteAssignment": [],
 "deviceState": "IDLE"
}

404 Not Found: If the device is not found.

Document Revision - v.1 ITL SDK Package Manual - 61

Status Body Notes

500 Internal Server Error: If there is an
error retrieving the device details.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetCompleteCashDevice?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetCompleteCashDevice?deviceID=NV200S',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import http.client

conn = http.client.HTTPSConnection("localhost", 5000)
payload = ''
headers = {
 'Authorization': 'Bearer eyJhb.....'
}
conn.request("GET", "/api/CashDevice/GetCompleteCashDevice?deviceID=NV200S", payload,
headers)
res = conn.getresponse()
data = res.read()
print(data.decode("utf-8"))

Document Revision - v.1 ITL SDK Package Manual - 62

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/GetCompleteCashDevice?deviceID=NV200S")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 63

•

REST API - GetDeviceStatus

Description
Retrieve the state changes of the device when different types of events are triggered.

Endpoint GetDeviceStatus

Method GET

URL {server_url}/api/CashDevice/GetDeviceStatus

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

The client should implement a mechanism to continuously poll the device status from the server at a
specified interval. E.g. 200 milliseconds.

Document Revision - v.1 ITL SDK Package Manual - 64

Response Types and Strings

type stateAsString

DeviceStatusRespone NOT_CONNECTED,

CONNECTING,

STARTING,

STARTED,

DISABLED,

IDLE,

ACCEPTING,

DISPENSING,

FLOATING,

EMPTYING,

REPLENISHING,

JAM_RECOVERY,

ERROR,

DEVICE_FULL,

RESET,

CONNECTED,

STOPPED,

PURGING,

PURGED,

INITIALISING,

CASHBOX_REMOVED,

CASHBOX_REPLACED,

STOPPING,

PAY_IN_ACTIVE,

COIN_MECH_ENABLED,

COIN_MECH_DISABLED,

MAINTENANCE_REQUIRED,

CHANNEL_DISABLE,

CALIBRATION_FAILED,

FRAUD_ATTEMPT,

LIFTER_EVENT,

REJECTING,

REJECTED,

COIN_MECH_JAMMED,

NOTE_HELD_IN_BEZEL,

BAR_CODE_TICKET_VALIDATED,

BAR_CODE_TICKET_ACKNOWLEDGE,

Document Revision - v.1 ITL SDK Package Manual - 65

type stateAsString

NOTE_FLOAT_REMOVED,

NOTE_FLOAT_ATTACHED,

NOTE_PATH_OPEN

DispenserTransactionEventResponse IN_PROGRESS,

COMPLETED,

ERROR

CashEventResponse ESCROW,

STACKED,

STACKED_FRAUD_ATTEMPT,

STORED,

STORED_FRAUD_ATTEMPT,

DISPENSING,

DISPENSED,

REJECTED,

RETRIEVED,

MOVED_TO_CASHBOX,

NOTE_IN_BEZEL_HOLD,

VALUE_ADDED,

TIME_OUT,

INCOMPLETE_PAYOUT,

INCOMPLETE_FLOAT,

FRAUD_ATTEMPT,

HALTED,

CALIBRATION_FAILED,

JAMMED,

COIN_CREDIT,

ERROR_DURING_PAYOUT,

NOTE_CLEARED_TO_CASHBOX,

NOTE_CLEARED_FROM_FRONT

ReplenishEventResponse REPLENISH_STORED,

REPLENISH_SENT_TO_RC_TRAY,

REPLENISH_CASSETTE_REMOVED,

REPLENISH_CASSETTE_REPLACED,

REPLENISH_CASSETTE_FULL

Document Revision - v.1 ITL SDK Package Manual - 66

•
•
•
•
•

type result

SetDenominationRouteFinishedEventResponse True

False

transactionType
0 = PAYOUT
1 = FLOAT
2 = REPLENISH
3 = EMPTY
4 = PAYOUT_BY_DENOMINATION

Response Examples

Status Body Notes

200

[
 {
 "type":
"DeviceStatusResponse",
 "state": 1,
 "stateAsString": "CONNECTING",
 "isRunning": true,
 "message": "Device state
changed: CONNECTING"
 },
 {
 "type":
"DeviceStatusResponse",
 "state": 15,
 "stateAsString": "CONNECTED",
 "isRunning": true,
 "message": "Device state
changed: CONNECTED"
 }
]

OK: Returns the list of states of the device.

E.g. Returning a queue of states
[CONNECTING, CONNECTED}

Document Revision - v.1 ITL SDK Package Manual - 67

Status Body Notes

200

[
 {
 "type":"DeviceStatusResponse",
 "stateAsString":"ACCEPTING",
 "message":"Device state changed:
ACCEPTING"
 },
 {
 "type":"CashEventResponse",
 "eventTypeAsString":"ESCROW",
 "value":500,
 "value2":0,
 "countryCode":"GBP",
 "message":"Cash event: ESCROW -
Value: 500 Value2: 0 - CountryCode:
GBP"
 },
 {
 "type":"CashEventResponse",
 "eventTypeAsString":"STORED",
 "value":500,
 "value2":0,
 "countryCode":"GBP",
 "message":"Cash event: STORED -
Value: 500 Value2: 0 - CountryCode:
GBP"
 },
 {
 "type":"DeviceStatusResponse",
 "stateAsString":"IDLE",
 "message":"Device state changed:
IDLE"
 }
]

OK: Returns the list of states of the device.

E.g. Returning a queue of states
[ACCEPTING, ESCROW VALUE 500 GBP,
STORED VALUE 500 GBP, IDLE}

500 Internal Server Error: If there is an error
retrieving the device states.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetDeviceStatus?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 68

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetDeviceStatus?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/GetDeviceStatus?deviceID=SPECTRAL_PAYOUT-
COM5"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/GetDeviceStatus?
deviceID=SPECTRAL_PAYOUT-COM5")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 69

•

•

•

REST API - GetCounters

Description
Retrieves the counter information from the device and formats the data into a readable string:

SMART_COIN_SYSTEM, TWIN_SMART_COIN_SYSTEM, SMART_HOPPER_4: Retrieves and formats the number
of counters, coins paid out, coins paid in, feeder rejects, hopper jams, feeder jams, fraud attempts,
calibration fails, resets, and coins sent to cashbox.
NV4000, SPECTRAL_DEVICE: Retrieves and formats the number of counters, stacked, stored, dispensed,
transferred to stack, and rejected counts.

Endpoint GetCounters

Method GET

URL {server_url}/api/CashDevice/GetCounters

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

SPECTRAL_PAYOUT-COM5: { CountersData
= Number of counters in set: 5
Stacked: 261
Stored: 42
Dispensed: 30
Transferred to stack: 11
Rejected: 26
 }

OK: If the counters data was retrieved
successfully.

400 Bad Request: If there is an error retrieving
the counters data.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,

Document Revision - v.1 ITL SDK Package Manual - 70

};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetCounters?deviceID=SPECTRAL_PAYOUT-
COM5", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetCounters?deviceID=SPECTRAL_PAYOUT-
COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/GetCounters?deviceID=SPECTRAL_PAYOUT-
COM5"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/GetCounters?deviceID=SPECTRAL_PAYOUT-
COM5")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 71

•

•
•

•

REST API - GetAllLevels

Description
Retrieves the current levels of all denominations from the device and updates the internal state with this
information.
For each level entry, it calculates the index using the denomination value and currency code.
If the index is valid, it updates the stored level for that denomination.

Endpoint GetAllLevels

Method GET

URL {server_url}/api/CashDevice/GetAllLevels

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Document Revision - v.1 ITL SDK Package Manual - 72

Responses

Status Body Notes

200

{
 "levels": [
 {
 "countryCode": "GBP",
 "value": 500,
 "stored": 0
 },
 {
 "countryCode": "GBP",
 "value": 1000,
 "stored": 0
 },
 {
 "countryCode": "GBP",
 "value": 2000,
 "stored": 0
 },
 {
 "countryCode": "GBP",
 "value": 5000,
 "stored": 0
 }
],
 "success": true,
 "message": "Successfully
retrieved all levels."
}

OK: Returns the levels information.

400 If there is an error retrieving levels
information.

Response with 200. The response body contains a LevelsResult object. The structure of the LevelsResult is
described below:

Field Type Description

Levels List<LevelInfo> A list of LevelInfo objects representing the levels of
different denominations.

Success bool Indicates whether the operation was successful.

Message string A message providing additional information about the
operation.

Each LevelInfo object in the Levels list has the following structure:

Field Type Description

Country
Code

string The country code of the denomination.

Document Revision - v.1 ITL SDK Package Manual - 73

Field Type Description

Value uint The value of the denomination.

Stored uint The number of stored units of this denomination.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetAllLevels?deviceID=SPECTRAL_PAYOUT-
COM5", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetAllLevels?deviceID=SPECTRAL_PAYOUT-
COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/GetAllLevels?deviceID=SPECTRAL_PAYOUT-
COM5"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Document Revision - v.1 ITL SDK Package Manual - 74

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/GetAllLevels?deviceID=SPECTRAL_PAYOUT-
COM5")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 75

•

REST API - GetCurrencyAssignment

Description
Get the levels of cash currently stored for each channel in the devices dataset.

Endpoint GetCurrencyAssignment

Method GET

URL {server_url}/api/CashDevice/GetCurrencyAssignment

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Document Revision - v.1 ITL SDK Package Manual - 76

Responses

Status Body Notes

200

[
 {
 "type": 1,
 "valueCountryCode": {
 "value": 500,
 "countryCode": "GBP",
 "fraud_Attempt_Value": -1,

"calibration_Failed_Value": -1
 },
 "value": 500,
 "countryCode": "GBP",
 "isInhibited": false,
 "isRecyclable": true,
 "acceptRoute": 7,
 "stored": 0,
 "storedInCashbox": 0,
 "channel": 1
 },
 {
 "type": 1,
 "valueCountryCode": {
 "value": 1000,
 "countryCode": "GBP",
 "fraud_Attempt_Value": -1,

"calibration_Failed_Value": -1
 },
 "value": 1000,
 "countryCode": "GBP",
 "isInhibited": false,
 "isRecyclable": true,
 "acceptRoute": 7,
 "stored": 0,
 "storedInCashbox": 0,
 "channel": 2
 },
 {
 "type": 1,
 "valueCountryCode": {
 "value": 2000,
 "countryCode": "GBP",
 "fraud_Attempt_Value": -1,

"calibration_Failed_Value": -1
 },
 "value": 2000,
 "countryCode": "GBP",
 "isInhibited": true,
 "isRecyclable": true,
 "acceptRoute": 0,
 "stored": 0,
 "storedInCashbox": 0,

Ok: If the currency assignments were
retrieved successfully.

Document Revision - v.1 ITL SDK Package Manual - 77

Status Body Notes

 "channel": 3
 },
 {
 "type": 1,
 "valueCountryCode": {
 "value": 5000,
 "countryCode": "GBP",
 "fraud_Attempt_Value": -1,

"calibration_Failed_Value": -1
 },
 "value": 5000,
 "countryCode": "GBP",
 "isInhibited": true,
 "isRecyclable": true,
 "acceptRoute": 0,
 "stored": 0,
 "storedInCashbox": 0,
 "channel": 4
 }
]

404 Not Found: If no currency assignments
were found.

 400 Bad Request: If there is an error retrieving
the currency assignments.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetCurrencyAssignment?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetCurrencyAssignment?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'

Document Revision - v.1 ITL SDK Package Manual - 78

 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/GetCurrencyAssignment?
deviceID=SPECTRAL_PAYOUT-COM5"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/GetCurrencyAssignment?
deviceID=SPECTRAL_PAYOUT-COM5")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 79

•

•
•
•

REST API - SetDenominationLevel

Description
A command to increment the level of coins of the specified denomination stored in the hopper.

Endpoint SetDenominationLevel

Method POST

URL {server_url}/api/CashDevice/SetDenominationLevel

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Body SetDenominationLevelRequest: The request body containing Value, CountryCode and
NumCoinsToAdd.

UInt32 Value: Value of denomination to set e.g 500, 1000 etc
string CountryCode: ASCII country code of denomination e.g. “GBP”, “EUR”, “USD” etc
uint numCoinsToAdd: the amount of coins to add to level (0 will clear the level)

{
 "Value": 100,
 "CountryCode": "{{Currency}}",
 "NumCoinsToAdd": 1
}

Responses

Status Body Notes

200

SMART_COIN_SYSTEM-COM10: Denomination
level set successfully.

OK: If the denomination level was set
successfully.

400 Bad Request: Failed to set denomination
level.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);

Document Revision - v.1 ITL SDK Package Manual - 80

var request = new RestRequest("/api/CashDevice/SetDenominationLevel?
deviceID=SMART_COIN_SYSTEM-COM10", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{" + "\n" +
@" ""Value"": 100, " + "\n" +
@" ""CountryCode"": ""GBP""," + "\n" +
@" ""NumCoinsToAdd"": 1" + "\n" +
@"}" + "\n" +
@"";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/SetDenominationLevel?
deviceID=SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "Value": 100,
 "CountryCode": "GBP",
 "NumCoinsToAdd": 1
 })

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/SetDenominationLevel?
deviceID=SMART_COIN_SYSTEM-COM10"

payload = json.dumps({
 "Value": 100,
 "CountryCode": "GBP",
 "NumCoinsToAdd": 1
})
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

Document Revision - v.1 ITL SDK Package Manual - 81

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"Value\": 100, \r\n
\"CountryCode\": \"GBP\",\r\n \"NumCoinsToAdd\": 1\r\n}\r\n");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/SetDenominationLevel?
deviceID=SMART_COIN_SYSTEM-COM10")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 82

•

REST API - EnablePayout

Description
Enables a connected pay-out module for storing and payout cash.

Endpoint EnablePayout

Method POST

URL {server_url}/api/CashDevice/EnablePayout

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

Payout enabled successfully.

OK: If the payout was enabled successfully.

400 Bad Request: If there is an error enabling
the payout.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/EnablePayout?deviceID=SPECTRAL_PAYOUT-
COM5", Method.Post);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');

Document Revision - v.1 ITL SDK Package Manual - 83

var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/EnablePayout?deviceID=SPECTRAL_PAYOUT-
COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/EnablePayout?deviceID=SPECTRAL_PAYOUT-
COM5"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/EnablePayout?deviceID=SPECTRAL_PAYOUT-
COM5")
 .method("POST", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 84

•

REST API - EnablePayoutDevice

Description
Enables a connected pay-out module for storing and payout cash.

Endpoint EnablePayoutDevice

Method POST

URL {server_url}/api/CashDevice/EnablePayoutDevice

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

SPECTRAL_PAYOUT-COM5: Payout device
enabled successfully.

OK: If the payout was enabled successfully.

400

Cash device not found

Cash device not found

500

Failed to enable payout device.
Error: {error_message}

Internal Server Error: An error occurred
while enabling the payout device.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/EnablePayoutDevice?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Post);

Document Revision - v.1 ITL SDK Package Manual - 85

request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"";
request.AddParameter("text/plain", body, ParameterType.RequestBody);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/EnablePayoutDevice?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/EnablePayoutDevice?
deviceID=SPECTRAL_PAYOUT-COM5"

payload = ""
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/EnablePayoutDevice?
deviceID=SPECTRAL_PAYOUT-COM5")
 .method("POST", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 86

•

REST API - EnablePayoutDeviceWithByte

Description

Enables a connected pay-out module for storing and payout cash with an additional byte for settings.

Endpoint EnablePayoutDeviceWithByte

Method POST

URL {server_url}/api/CashDevice/EnablePayoutDeviceWithByte

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body EnablePayoutDeviceByte (byte): Specifies whether to enable the payout device with specific
settings.

{
 "EnablePayoutDeviceByte": 0
}

Request Body Structure

Single Denomination Recycler

For NV11 / NV11S this request uses an addition data byte, a bit register allows some options to be set. When the
additional byte is not sent, all the bits default to 0.

Bit Function

0 GIVE_VALUE_ON_STORED. Set to 1 to enable the value of the note stored to be given with the Note
Stored event.

1 NO_HOLD_NOTE_ON_PAYOUT. Set to 1 to enable the function of fully rejecting the dispensed banknote
rather than holding it in the bezel.

2 Unused - Set to 0

3 Enable report reverse validated value on payout (NV11S only, fw >= 1.19). If set 1, unit will report reverse
validated value on dispensed event. If set 0, unit will report expected note value.

4 Unused - Set to 0

These options do not persist in memory and after a reset they will go to their default values.

Document Revision - v.1 ITL SDK Package Manual - 87

•
•

Bit Function

5 Unused - Set to 0

6 Unused - Set to 0

7 Unused - Set to 0

Multi Denomination Recycler

For Spectral Payout Range and NV22 this request uses an additional data byte, a bit register allows some options to
be set. When the additional byte is not sent, all the bits default to 0.

Bit Function

0 REQUIRE_FULL_STARTUP. If set to 1 the Payout will return busy until it has fully completed the startup
procedure.

1 OPTIMISE_FOR_PAYIN_SPEED. If set to 1 the device will always move towards an empty slot when idle to
try and ensure the shortest pay in speed possible.

2 HIGHEST_VALUE_SPLIT (NV22 only, Firmware versions ≥1.17).

Set to 0: unit will split the amount to pay it quicker
Set to 1: the unit will use the smallest number of notes to pay out the amount

The highest value only applies to payout/float by amount.

3 On Spectral Payout only (FW versions ≥ 4.29). If bit is set to 1 unit will report dispensing event with
expected note value when reverse validation fail.

Dataset with reverse validation enabled must be used (EUR11, GBP11, USD11…).

4 Unused - Set to 0

5 Unused - Set to 0

6 Unused - Set to 0

7 Unused - Set to 0

Responses

Status Body Notes

200

SPECTRAL_PAYOUT-COM5: Payout device
enabled successfully.

OK: If the payout was enabled successfully.

Document Revision - v.1 ITL SDK Package Manual - 88

Status Body Notes

404

Cash device not found

Not Found: The specified cash device was
not initialised

500

Failed to enable payout device.
Error: {error_message}

Internal Server Error: An error occurred
while enabling the payout device.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/EnablePayoutDeviceWithByte?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{" + "\n" +
@" ""EnablePayoutDeviceByte"": 0" + "\n" +
@"}" + "\n" +
@"";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/EnablePayoutDeviceWithByte?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "EnablePayoutDeviceByte": 0
 })

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Document Revision - v.1 ITL SDK Package Manual - 89

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/EnablePayoutDeviceWithByte?
deviceID=SPECTRAL_PAYOUT-COM5"

payload = json.dumps({
 "EnablePayoutDeviceByte": 0
})
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n
\"EnablePayoutDeviceByte\": 0\r\n}\r\n");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/EnablePayoutDeviceWithByte?
deviceID=SPECTRAL_PAYOUT-COM5")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 90

•

REST API - DisablePayout

Description
Disables a connected pay-out module.

Endpoint DisablePayout

Method POST

URL {server_url}/api/CashDevice/DisablePayout

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200 Payout disabled successfully. OK: If the payout was disabled successfully.

400 Bad Request: If there is an error disabling
the payout.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/DisablePayout?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Post);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',

Document Revision - v.1 ITL SDK Package Manual - 91

 'url': 'http://localhost:5000/api/CashDevice/DisablePayout?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/DisablePayout?deviceID=SPECTRAL_PAYOUT-
COM5"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/DisablePayout?deviceID=SPECTRAL_PAYOUT-
COM5")
 .method("POST", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 92

•

REST API - EnableAcceptor

Description
Enables the cash device to accept currency, does not enable any connected pay-out modules.

Endpoint EnableAcceptor

Method POST

URL {server_url}/api/CashDevice/EnableAcceptor

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

NV200S: Acceptor enabled
successfully.

OK: If the acceptor was enabled
successfully.

500 Internal Server Error: If there is an error
enabling the acceptor.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/EnableAcceptor?deviceID=NV200S",
Method.Post);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 93

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/EnableAcceptor?deviceID=NV200S',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import http.client

conn = http.client.HTTPSConnection("localhost", 5000)
payload = ''
headers = {
 'Authorization': 'Bearer eyJhb.....'
}
conn.request("POST", "/api/CashDevice/EnableAcceptor?deviceID=NV200S", payload,
headers)
res = conn.getresponse()
data = res.read()
print(data.decode("utf-8"))

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/EnableAcceptor?deviceID=NV200S")
 .method("POST", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 94

•

REST API - DisableAcceptor

Description
Disables the acceptor to stop accepting currency, any connected and enabled pay-out modules will stay enabled
and still pay-out cash

Endpoint DisableAcceptor

Method POST

URL {server_url}/api/CashDevice/DisableAcceptor

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

SPECTRAL_PAYOUT-COM5: Acceptor
disabled successfully.

OK: If the acceptor was disabled
successfully.

500 Internal Server Error: If there is an error
disabling the acceptor.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/DisableAcceptor?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Post);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 95

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/DisableAcceptor?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/DisableAcceptor?deviceID=SPECTRAL_PAYOUT-
COM5"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/DisableAcceptor?
deviceID=SPECTRAL_PAYOUT-COM5")
 .method("POST", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 96

•

REST API - SetAutoAccept

Description
Enable or disable auto accept from escrow.

Endpoint SetAutoAccept

Method POST

URL {server_url}/api/CashDevice/SetAutoAccept

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body (boolean) true to enable and false to disable auto accept notes held in escrow.

Responses

Status Body Notes

200

SPECTRAL_PAYOUT-COM5: Auto-accept set
to True

OK: If auto accept was set correctly.

500 Internal Server Error: If there is an error
enabling the acceptor.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/SetAutoAccept?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"true";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 97

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/SetAutoAccept?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify(true)

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/SetAutoAccept?deviceID=SPECTRAL_PAYOUT-
COM5"

payload = json.dumps(True)
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "true");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/SetAutoAccept?deviceID=SPECTRAL_PAYOUT-
COM5")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 98

•

REST API - AcceptFromEscrow

Description
Accepts a note currently being held in escrow.

Endpoint AcceptFromEscrow

Method POST

URL {server_url}/api/CashDevice/AcceptFromEscrow

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

SPECTRAL_PAYOUT-COM5: Note can be
accepted from escrow.

OK: If the note can be accepted from
escrow.

400

SPECTRAL_PAYOUT-COM5: Error accepting
note from escrow

Fail: No note in escrow.

500 Internal Server Error: If there is an error
accepting the note from escrow.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/AcceptFromEscrow?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Post);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);

Document Revision - v.1 ITL SDK Package Manual - 99

Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/AcceptFromEscrow?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/AcceptFromEscrow?
deviceID=SPECTRAL_PAYOUT-COM5"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/AcceptFromEscrow?
deviceID=SPECTRAL_PAYOUT-COM5")
 .method("POST", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 100

•

REST API - ReturnFromEscrow

Description
Returns a note currently being held in escrow

Endpoint ReturnFromEscrow

Method POST

URL {server_url}/api/CashDevice/ReturnFromEscrow

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

SPECTRAL_PAYOUT-COM5: Note can be
returned from escrow.

OK: If the note can be returned from
escrow.

400

SPECTRAL_PAYOUT-COM5: Error returning
note from escrow

Bad Request: No note in escrow.

500 Internal Server Error: If there is an error
returning the note from escrow.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/ReturnFromEscrow?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Post);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);

Document Revision - v.1 ITL SDK Package Manual - 101

Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/ReturnFromEscrow?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/ReturnFromEscrow?
deviceID=SPECTRAL_PAYOUT-COM5"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/ReturnFromEscrow?
deviceID=SPECTRAL_PAYOUT-COM5")
 .method("POST", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 102

•

•

•

REST API - SetDenominationInhibits

Description
Sets the inhibit status for a list of denomination and country code pairs.

Endpoint SetDenominationInhibits

Method POST

URL {server_url}/api/CashDevice/SetDenominationInhibits

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body InhibitsRequest: The request body containing ValueCountryCodes and Inhibit.

List<string> ValueCountryCodes: A list of string representing the denominations and
their respective country codes.
bool inhibit: Set true to inhibit the denominations, false to uninhibit

{
 "ValueCountryCodes": ["2000 {{Currency}}", "5000 {{Currency}}"],
 "Inhibit": true
}

Responses

Status Body Notes

200

SPECTRAL_PAYOUT-COM5: Denomination
inhibits set successfully.

OK: If denomination inhibits set
successfully.

400

Failed to set denomination inhibits.

Bad Request: Failed to set denomination
inhibits.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};

Document Revision - v.1 ITL SDK Package Manual - 103

var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/SetDenominationInhibits?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{" + "\n" +
@" ""ValueCountryCodes"": [""2000 GBP"", ""5000 GBP""]," + "\n" +
@" ""Inhibit"": true" + "\n" +
@"}" + "\n" +
@"" + "\n" +
@"";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/SetDenominationInhibits?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "ValueCountryCodes": [
 "2000 GBP",
 "5000 GBP"
],
 "Inhibit": true
 })

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/SetDenominationInhibits?
deviceID=SPECTRAL_PAYOUT-COM5"

payload = json.dumps({
 "ValueCountryCodes": [
 "2000 GBP",
 "5000 GBP"
],
 "Inhibit": True
})
headers = {
 'Content-Type': 'application/json',

Document Revision - v.1 ITL SDK Package Manual - 104

 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"ValueCountryCodes\":
[\"2000 GBP\", \"5000 GBP\"],\r\n \"Inhibit\": true\r\n}\r\n\r\n");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/SetDenominationInhibits?
deviceID=SPECTRAL_PAYOUT-COM5")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 105

•

•
•

REST API - SetDenominationInhibitByIndex

Description
Sets the inhibit status for a specific denomination based on its index.

Endpoint SetDenominationInhibitByIndex

Method POST

URL {server_url}/api/CashDevice/SetDenominationInhibitByIndex

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body DenominationInhibitByIndexRequest: The request body containing Index and Inhibit.

UInt32 index: The index of the denomination to inhibit or uninhibit.
bool inhibit: Set true to inhibit the denominations, false to uninhibit.

{
 "Index": 2,
 "Inhibit": false
}

Responses

Status Body Notes

200

SPECTRAL_PAYOUT-COM5: Denomination at
index 2 successfully uninhibited.

OK: If denomination inhibit was set
successfully.

500 Internal Server Error: If there is an error
setting the denomination inhibit.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,

As the index starts from 0, channel 1 will be “index”: 0.

Document Revision - v.1 ITL SDK Package Manual - 106

};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/SetDenominationInhibitByIndex?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{" + "\n" +
@" ""Index"": 2," + "\n" +
@" ""Inhibit"": false" + "\n" +
@"}";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/SetDenominationInhibitByIndex?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "Index": 2,
 "Inhibit": false
 })

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/SetDenominationInhibitByIndex?
deviceID=SPECTRAL_PAYOUT-COM5"

payload = json.dumps({
 "Index": 2,
 "Inhibit": False
})
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Document Revision - v.1 ITL SDK Package Manual - 107

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"Index\": 2,\r\n
\"Inhibit\": false\r\n}");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/SetDenominationInhibitByIndex?
deviceID=SPECTRAL_PAYOUT-COM5")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 108

•

•
•
•

•

REST API - SetDenominationInhibit

Description
Sets the inhibit status for a single denomination and country code pair.

Endpoint SetDenominationInhibit

Method POST

URL {server_url}/api/CashDevice/SetDenominationInhibit

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body The request body containing Value, CountryCode and Inhibit.
UInt32 Value: Denomination value e.g 500, 1000 etc
string CountryCode: The country code of the currency e.g. “GBP”, “EUR”, “USD”
etc

bool inhibit: Set true to inhibit the denomination, false to uninhibit.

{
 "Value": 1000, "CountryCode": "{{Currency}}",
 "Inhibit": true
}

Responses

Status Body Notes

200

SPECTRAL_PAYOUT-COM5: Denomination
1000 for country GBP successfully
inhibited.

OK: If denomination inhibit was set
successfully.

500 Internal Server Error: If there is an error
setting the denomination inhibit.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,

Document Revision - v.1 ITL SDK Package Manual - 109

};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/SetDenominationInhibit?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{" + "\n" +
@" ""Value"": 1000, ""CountryCode"": ""GBP""," + "\n" +
@" ""Inhibit"": true" + "\n" +
@"}";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/SetDenominationInhibit?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "Value": 1000,
 "CountryCode": "GBP",
 "Inhibit": true
 })

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/SetDenominationInhibit?
deviceID=SPECTRAL_PAYOUT-COM5"

payload = json.dumps({
 "Value": 1000,
 "CountryCode": "GBP",
 "Inhibit": True
})
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

Document Revision - v.1 ITL SDK Package Manual - 110

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"Value\": 1000,
\"CountryCode\": \"GBP\",\r\n \"Inhibit\": true\r\n}");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/SetDenominationInhibit?
deviceID=SPECTRAL_PAYOUT-COM5")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 111

•

•

•
•

•
•

•

•

•

•

•

REST API - SetDenominationRoute

Description
Configure the specified denomination to be either routed to cashbox or stored to be made available for later
possible payout

Endpoint SetDenominationRoute

Method POST

URL {server_url}/api/CashDevice/SetDenominationRoute

Parameters deviceID (string): The unique identifier of the cash device.

Body SetDenomRoutesRequest: The request body containing Value, CountryCode and Route.

ValueCountryCode valueCountryCode: is an object representing the denomination and
its respective country code:

UInt32 Value: Denomination value e.g 500, 1000 etc
string CountryCode: The country code of the currency e.g. “GBP”, “EUR”, “USD”
etc

DenominationRoute route:
"Route": 0: DenominationRoute.CASHBOX: Routes to cashbox

"Route": 1 : DenominationRoute.RECYCLER: Routes to single recycler
(Smart Pay-out) or an available recycler (NV4000)
"Route": 2: DenominationRoute.RECYCLER_1: Routes to the first (top)

recycler, NV4000 only
"Route": 3: DenominationRoute.RECYCLER_2: Routes to the second

recycler, NV4000 only
"Route": 4: DenominationRoute.RECYCLER_3: Routes to the third recycler,

NV4000 only
"Route": 5: DenominationRoute.RECYCLER_4: Routes to the fourth

(bottom) recycler, NV4000 only

{
 "Value": 500,
 "CountryCode": "{{currency}}",
 "Route": 1
}

Responses

Status Body Notes

200 NV200S: Set 500 EUR route to RECYCLER
successfully!

Ok: If the denomination route was set
successfully.

 400 Bad Request: If there is an error setting the
denomination route.

Document Revision - v.1 ITL SDK Package Manual - 112

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/SetDenominationRoute?deviceID=NV200S",
Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{
" + "\n" +
@" ""Value"": 500,
" + "\n" +
@" ""CountryCode"": ""EUR"",
" + "\n" +
@" ""Route"": 1
" + "\n" +
@"}
" + "\n" +
@"";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/SetDenominationRoute?deviceID=NV200S',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "Value": 500,
 "CountryCode": "EUR",
 "Route": 1
 })

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/SetDenominationRoute?deviceID=NV200S"

Document Revision - v.1 ITL SDK Package Manual - 113

payload = json.dumps({
 "Value": 500,
 "CountryCode": "EUR",
 "Route": 1
})
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"Value\": 500,\r\n
\"CountryCode\": \"EUR\",\r\n \"Route\": 1\r\n}\r\n");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/SetDenominationRoute?deviceID=NV200S")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 114

•

•
•
•
•
•

•
•
•
•
•

•
•
•

•
•

REST API - GetBarcodeReaderConfiguration

Description
Allows the host to set-up the barcode reader(s) configuration on the device

Endpoint GetBarcodeReaderConfiguration

Method GET

URL {server_url}/api/CashDevice/GetBarcodeReaderConfiguration

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses
hardwareStatus:

None
Top reader fitted
Bottom reader fitted
Both fitted

readerEnabled:
None
Top
Bottom
Both

barcodeFormat:
None
Interleaced 2 of 5

numCharacters:
Min6, Max 24

Status Body Notes

200

{
 "hardwareStatus": "Both fitted",
 "readersEnabled": "Both",
 "barcodeFormat": "Interleaved 2
of 5",
 "numCharacters": "18"
}

OK: Successfully retrieved the barcode
reader configuration.

404

Cash device not found

Not Found: The specified cash device was
not initialised

Document Revision - v.1 ITL SDK Package Manual - 115

Status Body Notes

500

Unable to get barcode reader
configuration.

Internal Server Error: Unable to retrieve
barcode reader configuration.

500

Error during barcode reader
configuration: {error_message}

Internal Server Error: An error occurred
while retrieving the configuration.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetBarcodeReaderConfiguration?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"";
request.AddParameter("text/plain", body, ParameterType.RequestBody);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetBarcodeReaderConfiguration?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/GetBarcodeReaderConfiguration?
deviceID=SPECTRAL_PAYOUT-COM5"

payload = ""

Document Revision - v.1 ITL SDK Package Manual - 116

headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/GetBarcodeReaderConfiguration?
deviceID=SPECTRAL_PAYOUT-COM5")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 117

•

•
•
•
•
•

•
•
•

•
•

REST API - SetBarcodeReaderConfiguration

Description
Allows the host to set-up the barcode reader(s) configuration on the device

Endpoint SetBarcodeReaderConfiguration

Method POST

URL {server_url}/api/CashDevice/SetBarcodeReaderConfiguration

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body byte EnableReaders: Enable Readers
0x00 = Enable none
0x01 = Enable top
0x02 = Enable bottom
0x03 = Enable both

byte BarCodeFormat: Bar code format
0x00 = None
0x01 = Interleaved 2 of 5

byte NumberOfCharacters: Number of characters
Min 6 – Max 24

{
 "EnableReaders": 0,
 "BarCodeFormat": 0,
 "NumberOfCharacters": 6
}

Responses

Status Body Notes

200

Barcode reader configuration updated
successfully.

OK: Barcode reader configuration was
successfully updated.

404

Cash device not found

Not Found: The specified cash device was
not initialised

Document Revision - v.1 ITL SDK Package Manual - 118

Status Body Notes

500

Unable to update barcode reader
configuration.

Internal Server Error: Unable to retrieve
Barcode Data.

500

Error during barcode reader
configuration: {error_message}

Internal Server Error: An error occurred
while updating configuration.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/SetBarcodeReaderConfiguration?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{" + "\n" +
@" ""EnableReaders"": 0," + "\n" +
@" ""BarCodeFormat"": 0," + "\n" +
@" ""NumberOfCharacters"": 6" + "\n" +
@"}";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/SetBarcodeReaderConfiguration?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "EnableReaders": 0,
 "BarCodeFormat": 0,
 "NumberOfCharacters": 6
 })

};
request(options, function (error, response) {
 if (error) throw new Error(error);

Document Revision - v.1 ITL SDK Package Manual - 119

 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/SetBarcodeReaderConfiguration?
deviceID=SPECTRAL_PAYOUT-COM5"

payload = json.dumps({
 "EnableReaders": 0,
 "BarCodeFormat": 0,
 "NumberOfCharacters": 6
})
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"EnableReaders\": 0,\r\n
\"BarCodeFormat\": 0,\r\n \"NumberOfCharacters\": 6\r\n}");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/SetBarcodeReaderConfiguration?
deviceID=SPECTRAL_PAYOUT-COM5")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 120

•

•

REST API - GetBarcodeInhibit

Description
Returns the current barcode/currency inhibit status.

Endpoint GetBarcodeInhibit

Method GET

URL {server_url}/api/CashDevice/GetBarcodeInhibit

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

{
 "deviceID": "SPECTRAL_PAYOUT-
COM5",
 "barcodeInhibitStatus": "Barcode
Disabled and Currency Enabled
(Default)"
}

OK: Successfully retrieved the barcode
inhibit status.

404

Cash device not found

Not Found: The specified cash device was
not initialised

500

Failed to get barcode inhibit status.

Internal Server Error: Unable to retrieve
barcode inhibit status.

500

Error getting barcode inhibit status:
{error_message}

Internal Server Error: An error occurred
while retrieving the status.

Document Revision - v.1 ITL SDK Package Manual - 121

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetBarcodeInhibit?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetBarcodeInhibit?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/GetBarcodeInhibit?
deviceID=SPECTRAL_PAYOUT-COM5"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()

Document Revision - v.1 ITL SDK Package Manual - 122

 .url("http://localhost:5000/api/CashDevice/GetBarcodeInhibit?
deviceID=SPECTRAL_PAYOUT-COM5")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 123

•

•

•
•
•
•
•

REST API - SetBarcodeInhibit

Description
Used to set up the bar code inhibit status register.

Endpoint SetBarcodeInhibit

Method POST

URL {server_url}/api/CashDevice/SetBarcodeInhibit

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body byte inhibitByte: A byte indication to enable or disable barcode/currency inhibit:
255 = Both Currency and Barcode Disabled
254 = Barcode Disabled and Currency Enabled (Default)
253 = Barcode Enabled and Currency Disabled
252 = Both Currency and Barcode Enabled

Responses

Status Body Notes

200

SPECTRAL_PAYOUT-COM5: Barcode inhibit
set successfully.

OK: Barcode inhibit status was successfully
updated.

404

Cash device not found

Not Found: The specified cash device was
not initialised.

500

Failed to set barcode inhibit.

Internal Server Error: Unable to update
barcode inhibit status.

500

Error setting barcode inhibit:
{error_message}

Internal Server Error: An error occurred
while updating inhibit status.

Document Revision - v.1 ITL SDK Package Manual - 124

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/SetBarcodeInhibit?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"252";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/SetBarcodeInhibit?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify(252)

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/SetBarcodeInhibit?
deviceID=SPECTRAL_PAYOUT-COM5"

payload = json.dumps(252)
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Document Revision - v.1 ITL SDK Package Manual - 125

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "252");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/SetBarcodeInhibit?
deviceID=SPECTRAL_PAYOUT-COM5")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 126

•

REST API - GetBarcodeData

Description
Obtains the last valid barcode ticket data.

Endpoint GetBarcodeData

Method Get

URL {server_url}/api/CashDevice/GetBarcodeData

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

{
 "ticketStatus":
"ticket_status_value"
 "barcodeData":
"barcode_ascii_data_value"
}

OK: Successfully retrieved the barcode data
and ticket status

404

Cash device not found

Not Found: The specified cash device was
not initialised

500

Failed to get Barcode Data

Internal Server Error: Unable to retrieve
Barcode Data.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};

Document Revision - v.1 ITL SDK Package Manual - 127

var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetBarcodeData?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"";
request.AddParameter("text/plain", body, ParameterType.RequestBody);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetBarcodeData?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/GetBarcodeData?deviceID=SPECTRAL_PAYOUT-
COM5"

payload = ""
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/GetBarcodeData?deviceID=SPECTRAL_PAYOUT-
COM5")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 128

•

•
•
•

REST API - DispenseValue

Description
Dispenses the specified value of a specified currency.

Endpoint DispenseValue

Method POST

URL {server_url}/api/CashDevice/DispenseValue

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body The denomination and its respective country code.
UInt32 Value: Denomination value to pay-out e.g 500, 1000 etc
string CountryCode: The country code of the currency that is to be paid out e.g.
“GBP”, “EUR”, “USD” etc

{
 "Value": 1500,
 "CountryCode": "{{Currency}}"
}

Responses

Status Body Notes

200

Dispense operation initiated
successfully.

OK: Pay-out can be completed.

400

Failed to initiate dispense
operation: INVALID_INPUT

Bad Request: If there is an error during
payout operation.

errorReason

Code Error Description

1 Not enough value in device The value requested exceeds the level stored in the payout device

Document Revision - v.1 ITL SDK Package Manual - 129

Code Error Description

2 Cannot pay exact amount The value requested cannot be paid with the levels stored in the
payout device

3 Device busy The payout device cannot execute the payout request because it is
busy with other tasks

4 Device disabled The payout device is to its disabled state and hence refuses the
payout request

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/DispenseValue?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{" + "\n" +
@" ""Value"": 1500," + "\n" +
@" ""CountryCode"": ""GBP""" + "\n" +
@"}" + "\n" +
@"";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/DispenseValue?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "Value": 1500,
 "CountryCode": "GBP"
 })

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Document Revision - v.1 ITL SDK Package Manual - 130

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/DispenseValue?deviceID=SPECTRAL_PAYOUT-
COM5"

payload = json.dumps({
 "Value": 1500,
 "CountryCode": "GBP"
})
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"Value\": 1500,\r\n
\"CountryCode\": \"GBP\"\r\n}\r\n");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/DispenseValue?deviceID=SPECTRAL_PAYOUT-
COM5")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 131

•

•

•
•

•

REST API - PayoutByDenomination

Description
Performs a payout transaction by the specified denomination and the number of notes to payout.

Endpoint PayoutByDenomination

Method POST

URL {server_url}/api/CashDevice/PayoutByDenomination

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body PayoutRequest: The request body containing Value, CountryCode and NumNotes.

ValueCountryCode denomination_to_payout: representing the denomination and its
respective country code:

UInt32 Value: Denomination value to pay-out e.g. 500, 1000 etc
string CountryCode: The country code of the currency that is to be paid out e.g.
“GBP”, “EUR”, “USD” etc

UInt32 numNotes: The number of notes to payout. If set to 0, all notes of the specified
denomination will be dispensed.

{
 "Value": 500,
 "CountryCode": "{{Currency}}",
 "NumNotes": 1
}

Responses

Status Body Notes

200

{
 "success": true,
 "message": "Payout operation
status: OK"
}

Ok: If the payout by denomination was
initiated successfully.

 400 Bad Request: If there is an error during
payout by denomination.

Document Revision - v.1 ITL SDK Package Manual - 132

errorReason

Code Error Description

1 Not enough value in device The value requested exceeds the level stored in the payout device

2 Cannot pay exact amount The value requested cannot be paid with the levels stored in the
payout device

3 Device busy The payout device cannot execute the payout request because it is
busy with other tasks

4 Device disabled The payout device is to its disabled state and hence refuses the
payout request

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/PayoutByDenomination?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{" + "\n" +
@" ""Value"": 500," + "\n" +
@" ""CountryCode"": ""GBP""," + "\n" +
@" ""NumNotes"": 1" + "\n" +
@"}" + "\n" +
@"";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/PayoutByDenomination?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "Value": 500,
 "CountryCode": "GBP",
 "NumNotes": 1
 })

Document Revision - v.1 ITL SDK Package Manual - 133

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/PayoutByDenomination?
deviceID=SPECTRAL_PAYOUT-COM5"

payload = json.dumps({
 "Value": 500,
 "CountryCode": "GBP",
 "NumNotes": 1
})
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"Value\": 500,\r\n
\"CountryCode\": \"GBP\",\r\n \"NumNotes\": 1\r\n}\r\n");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/PayoutByDenomination?
deviceID=SPECTRAL_PAYOUT-COM5")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 134

•

REST API - PayoutMultipleDenominations

Description
Perform a payout transaction for multiple denominations.

Endpoint PayoutMultipleDenominations

Method POST

URL {server_url}/api/CashDevice/PayoutMultipleDenominations

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body UInt32[] noteCounts: an array of note counts to payout, where each index corresponds to a
specific denomination. E.g. if the currency assignment array of GBP is {500, 1000, 2000, 5000},
then to payout two £5 notes, one £10 note and one £20 note, the parameter noteCounts would
be [2,1,1,0].

[2,1,1,0]

Responses

Status Body Notes

200

Payout by denomination initiated
successfully.

Ok: If the payout of multiple denominations
was initiated successfully.

 400 Bad Request: If there is an error during
payout of multiple denominations.

errorReason

Code Error Description

1 Not enough value in device The value requested exceeds the level stored in the payout device

2 Cannot pay exact amount The value requested cannot be paid with the levels stored in the
payout device

3 Device busy The payout device cannot execute the payout request because it is
busy with other tasks

Document Revision - v.1 ITL SDK Package Manual - 135

Code Error Description

4 Device disabled The payout device is to its disabled state and hence refuses the
payout request

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/PayoutMultipleDenominations?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"[2,1,1,0]";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/PayoutMultipleDenominations?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify([
 2,
 1,
 1,
 0
])

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

Document Revision - v.1 ITL SDK Package Manual - 136

url = "http://localhost:5000/api/CashDevice/PayoutMultipleDenominations?
deviceID=SPECTRAL_PAYOUT-COM5"

payload = json.dumps([
 2,
 1,
 1,
 0
])
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "[2,1,1,0]");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/PayoutMultipleDenominations?
deviceID=SPECTRAL_PAYOUT-COM5")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 137

•

•
•

•
•

•

REST API - Float

Description
Leaves the specified number of notes in the pay-out and moves the excess to the cashbox to maintain a stored pay-
out amount for the purpose of being able to collect excess notes whilst leaving some for pay-out purposes.

Endpoint Float

Method POST

URL {server_url}/api/CashDevice/Float

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body UInt32[] noteCounts:
An array of UInt32 of size equal to the number of channels in the dataset. Each
UInt32 is the number of notes to be left for payout, its index is the channel to
float

E.g. For a GBP dataset containing £5, £10, £20 and £50
If noteCounts = [2, 2, 2, 0]

2 x £5, 2 x £10, 2 x £20 and 0 x £50 notes would be left in the payout.

 [2, 2, 2, 0]

Responses

Status Body Notes

200

SPECTRAL_PAYOUT-COM5: Float operation
completed successfully.

OK: If the float operation was initiated
successfully.

400

Not enough value to perform float.

Bad Request: If there is an error initiating
the float operation.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,

Document Revision - v.1 ITL SDK Package Manual - 138

};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/Float?deviceID=SPECTRAL_PAYOUT-COM5",
Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @" [2, 2, 2, 0]" + "\n" +
@"";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/Float?deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify([
 2,
 2,
 2,
 0
])

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/Float?deviceID=SPECTRAL_PAYOUT-COM5"

payload = json.dumps([
 2,
 2,
 2,
 0
])
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Document Revision - v.1 ITL SDK Package Manual - 139

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, " [2, 2, 2, 0]\r\n");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/Float?deviceID=SPECTRAL_PAYOUT-COM5")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 140

•

•

•
•

REST API - SetCashboxPayoutLimit

Description
Sets the cashbox payout limit by specifying the maximum number of notes for each denomination.

Endpoint SetCashboxPayoutLimit

Method POST

URL {server_url}/api/CashDevice/SetCashboxPayoutLimit

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body uint[] noteCounts: An array of note counts representing the maximum number of notes
that can be paid out for each denomination. Each index corresponds to a specific
denomination in the currency assignment array.

E.g. For the dataset containing £5, £10, £20, £50.
To set the payout limit to 5 for £5, 5 for £10, 5 for £20, the parameter noteCounts
would be [5,5,5,0].

[5,5,5,0]

Responses

Status Body Notes

200

SPECTRAL_PAYOUT-COM5: Cashbox payout
limit set successfully.

OK: If the cashbox payout limit was set
successfully.

400 Bad Request: If there is an error setting the
cashbox payout limit.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);

Document Revision - v.1 ITL SDK Package Manual - 141

var request = new RestRequest("/api/CashDevice/SetCashboxPayoutLimit?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"[5,5,5,0]";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/SetCashboxPayoutLimit?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify([
 5,
 5,
 5,
 0
])

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/SetCashboxPayoutLimit?
deviceID=SPECTRAL_PAYOUT-COM5"

payload = json.dumps([
 5,
 5,
 5,
 0
])
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Document Revision - v.1 ITL SDK Package Manual - 142

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "[5,5,5,0]");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/SetCashboxPayoutLimit?
deviceID=SPECTRAL_PAYOUT-COM5")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 143

•

•

•

REST API - SmartEmpty

Description
Initiates a smart empty operation on the specified module number of the dispenser.

Endpoint SmartEmpty

Method POST

URL {server_url}/api/CashDevice/SmartEmpty

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body byte moduleNumber: the module number to empty. If NV4000 is true and
moduleNumber is 0, all modules will be emptied.
bool NV4000: indicating whether the operation is for NV4000 model. Default is false.

{
 "ModuleNumber": 0,
 "IsNV4000": false
}

Responses

Status Body Notes

200

Smart empty operation completed
successfully.

OK: If the smart empty operation was
completed successfully.

400 Bad Request: If there is an error performing
the smart empty operation.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);

Document Revision - v.1 ITL SDK Package Manual - 144

var request = new RestRequest("/api/CashDevice/SmartEmpty?deviceID=SPECTRAL_PAYOUT-
COM5", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{" + "\n" +
@" ""ModuleNumber"": 0," + "\n" +
@" ""IsNV4000"": false" + "\n" +
@"}";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/SmartEmpty?deviceID=SPECTRAL_PAYOUT-
COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "ModuleNumber": 0,
 "IsNV4000": false
 })

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/SmartEmpty?deviceID=SPECTRAL_PAYOUT-COM5"

payload = json.dumps({
 "ModuleNumber": 0,
 "IsNV4000": False
})
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Document Revision - v.1 ITL SDK Package Manual - 145

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"ModuleNumber\": 0,\r\n
\"IsNV4000\": false\r\n}");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/SmartEmpty?deviceID=SPECTRAL_PAYOUT-
COM5")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 146

•

REST API - SendCustomCommand

Description
Sends a custom command to the device, constructed as an array of bytes

Endpoint SendCustomCommand

Method POST

URL {server_url}/api/CashDevice/SendCustomCommand

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body string CustomCommandDataString: A string containing the raw byte data to be sent to the
device.

{
 "CustomCommandDataString": "01"
}

Responses

Status Body Notes

200

Custom command sent successfully.

OK: If the custom command was sent
successfully and acknowledged by cash
device.

400 Bad Request: If there is an error sending the
custom command.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/SendCustomCommand?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");

Document Revision - v.1 ITL SDK Package Manual - 147

var body = @"{" + "\n" +
@" ""CustomCommandDataString"": ""01""" + "\n" +
@"}" + "\n" +
@"";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/SendCustomCommand?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "CustomCommandDataString": "01"
 })

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/SendCustomCommand?
deviceID=SPECTRAL_PAYOUT-COM5"

payload = json.dumps({
 "CustomCommandDataString": "01"
})
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");

Document Revision - v.1 ITL SDK Package Manual - 148

RequestBody body = RequestBody.create(mediaType, "{\r\n
\"CustomCommandDataString\": \"01\"\r\n}\r\n");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/SendCustomCommand?
deviceID=SPECTRAL_PAYOUT-COM5")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 149

•

REST API - EnableCoinMechOrFeeder

Description
Enables the coin mechanism or feeder for specific device models

Endpoint EnableCoinMechOrFeeder

Method POST

URL {server_url}/api/CashDevice/EnableCoinMechOrFeeder

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

Coin mechanism or feeder enabled
successfully.

OK: If successfully enabled.

400 Bad Request: If enable fails.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/EnableCoinMechOrFeeder?
deviceID=SMART_COIN_SYSTEM-COM10", Method.Post);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');

Document Revision - v.1 ITL SDK Package Manual - 150

var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/EnableCoinMechOrFeeder?
deviceID=SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/EnableCoinMechOrFeeder?
deviceID=SMART_COIN_SYSTEM-COM10"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/EnableCoinMechOrFeeder?
deviceID=SMART_COIN_SYSTEM-COM10")
 .method("POST", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 151

•

REST API - ResetDevice

Description
Resets the device to its initial state.

Endpoint ResetDevice

Method POST

URL {server_url}/api/CashDevice/ResetDevice

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

Device reset successfully.

OK: If the device was reset successfully.

400 Bad Request: If there is an error resetting
the device.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/ResetDevice?deviceID=SPECTRAL_PAYOUT-
COM5", Method.Post);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');

Document Revision - v.1 ITL SDK Package Manual - 152

var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/ResetDevice?deviceID=SPECTRAL_PAYOUT-
COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/ResetDevice?deviceID=SPECTRAL_PAYOUT-
COM5"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/ResetDevice?deviceID=SPECTRAL_PAYOUT-
COM5")
 .method("POST", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 153

•

REST API - HaltPayout

Description
Halts the payout operation of the device.

Endpoint HaltPayout

Method POST

URL {server_url}/api/CashDevice/HaltPayout

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

Payout halted successfully.

OK: If the device was halted successfully.

400 Bad Request: If there is an error halting the
payout.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/HaltPayout?deviceID=SPECTRAL_PAYOUT-
COM5", Method.Post);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');

Document Revision - v.1 ITL SDK Package Manual - 154

var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/HaltPayout?deviceID=SPECTRAL_PAYOUT-
COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/HaltPayout?deviceID=SPECTRAL_PAYOUT-COM5"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/HaltPayout?deviceID=SPECTRAL_PAYOUT-
COM5")
 .method("POST", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 155

•
•

•

REST API - GetRCMode

Description
Retrieve the current mode of replenishment cassette.

Replenishment Mode
Payout Mode

Endpoint GetRCMode

Method Get

URL {server_url}/api/CashDevice/GetRCMode

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

RC_MODE_PAYOUT

OK: Successfully retrieved the RC mode

404

Cash device not found

Not Found: The specified cash device was
not initialised

500

Failed to get RC Mode.

Internal Server Error: Unable to retrieve RC
Mode.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};

Can only be used with the NV4000 with RC device model.

Document Revision - v.1 ITL SDK Package Manual - 156

var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetRCMode?deviceID=SPECTRAL_PAYOUT-
COM5", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetRCMode?deviceID=SPECTRAL_PAYOUT-
COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/GetRCMode?deviceID=SPECTRAL_PAYOUT-COM5"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/GetRCMode?deviceID=SPECTRAL_PAYOUT-
COM5")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 157

•

•

REST API - Replenish

Description
Replenishes the specified number of notes from the replenishment cassette to the recyclers.

Endpoint Replenish

Method POST

URL {server_url}/api/CashDevice/Replenish

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body uint NumberToReplenish: The number of notes to replenish from the RC to the pay-out
modules e.g. to replenish 5 notes to recyclers, set NumberToReplenish to 5.

5

Responses

Status Body Notes

200

Replenishment completed successfully.

OK: Notes replenished successfully.

400 Bad Request: If there is an error during
replenishment.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/Replenish?deviceID=NV4000-COM5",
Method.Post);
request.AddHeader("Content-Type", "application/json");

Can only be used with the NV4000 with RC device model.

Document Revision - v.1 ITL SDK Package Manual - 158

request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"4";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/Replenish?deviceID=NV4000-COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify(4)

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/Replenish?deviceID=NV4000-COM5"

payload = json.dumps(4)
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "4");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/Replenish?deviceID=NV4000-COM5")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 159

•

•

REST API - RefillMode

Description
Enables or disables the refill mode of the device

Endpoint RefillMode

Method POST

URL {server_url}/api/CashDevice/RefillMode

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body True to enable, or false to disable.

Responses

Status Body Notes

200

NV4000-COM5: Refill mode disabled
successfully.

OK: If the refill mode was set successfully.

400 Bad Request: If there is an error setting the
refill mode.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/RefillMode?deviceID=NV4000-COM5",
Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"false";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 160

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/RefillMode?deviceID=NV4000-COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify(false)

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/RefillMode?deviceID=NV4000-COM5"

payload = json.dumps(False)
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "false");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/RefillMode?deviceID=NV4000-COM5")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 161

•

REST API - KeyExchangeLimit32bit

Description
Performs a key exchange with a 32-bit limit and enables encryption if successful

Endpoint KeyExchangeLimit32bit

Method POST

URL {server_url}/api/CashDevice/KeyExchangeLimit32bit

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

Key exchange limit set to 32-bit
successfully.

OK: If the key exchange limit was set
successfully.

400 Bad Request: If there is an error sending the
request.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/KeyExchangeLimit32bit?deviceID=NV4000-
COM5", Method.Post);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 162

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/KeyExchangeLimit32bit?deviceID=NV4000-
COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/KeyExchangeLimit32bit?deviceID=NV4000-
COM5"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/KeyExchangeLimit32bit?deviceID=NV4000-
COM5")
 .method("POST", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 163

•

REST API - GetHopperOptions

Description
Retrieves the current hopper options from the device and updates internal registers with this information.

Endpoint GetHopperOptions

Method GET

URL {server_url}/api/CashDevice/GetHopperOptions

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Reg_0 bits and their meaning

Bit Parameter Function

0 Pay Mode 0x00 = Split by highest value (Default). The device will attempt to payout a
requested value by starting from the highest to the lowest coins available. This mode
will payout the minimum number of coins possible.

0x01 = Free pay. The device will payout a coin as it passes its discriminator system if
it fits into the current payout value and will leave enough of other coins to payout
the rest of the value. This may give a faster payout but could result in a large number
of coins of small denominations paid out.

1 Level Check 0x00 = Disabled. The device will not refer to the level counters when calculating if a
payout value can be made.

0x01 = Enabled (Default). The device will check the level counters and accept or
refuse a payout request based on levels and/or split of available levels.

2 Motor Speed 0x00 = Low speed. Payouts run at a lower motor speed.

0x01 = High Speed (default always after reset). The motors run at max speed for
payouts.

Document Revision - v.1 ITL SDK Package Manual - 164

Reg_0 bits and their meaning

3 Cashbox Pay
Active

This bit is used in conjunction with Bit 0. If bit 3 is zero, then the Pay modes will be as
described in bit 0. If Bit 3 is set then coins routed to the cashbox will be used in coins
paid out of the front if they can fit into the current payout request. This is shown
below.

Pay Mode Type Bit 0 Bit 3
Free Play 1 0
Highest Split 0 1
All Route Free Pay 1 1
All Route Highest Split 0 1

4 Route 0 level
coins to cashbox

Set to 0x01 means that any coins detected with a level setting of 0 will be paid to the
cashbox, even if it is routed to the payout.

5 High Efficiency
Split

Default set to 0x01 to enable a more efficient, smarter coin payout algorithm which
will tend to use coins which have higher level counts - thus speeding up the payout
process.

6 Unknown to
Payout

Set to 0x01 means any unknown coins will be paid out during Smart Empty
(otherwise they will be routed to cashbox).

7 Value Added 0x00 = Coin added event
0x01 = Value added event

Reg_1 bits and their meaning

Bit Parameter Function

0 Reject Events Set to 1 gives reject event 0xBA Coin Rejected.

1 Reject Events
Full

Set to 1 gives reject event 0xBA with coin value if known.

2 Empty Route Set to 1 will route coins to payout when a Empty or Smart Empty command is
received.

3 Full to Cashbox Set to 1 will start moving coins to cashbox during payouts when full.

4 Value Coin Set to 1 gives individual coin payout events.

5 N/A Set to 0.

6 N/A Set to 0.

7 N/A Set to 0.

Document Revision - v.1 ITL SDK Package Manual - 165

Example Response

Status Body Notes

200

SMART_COIN_SYSTEM-COM10: { Reg0 = 04,
Reg1 = 00 }

OK: If the hopper options were retrieved
successfully.

400 Bad Request: If there is an error retrieving
the hopper options.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetHopperOptions?
deviceID=SMART_COIN_SYSTEM-COM10", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhbimport requests

url = "http://localhost:5000/api/CashDevice/GetHopperOptions?
deviceID=SMART_COIN_SYSTEM-COM10"

payload = {}
headers = {
 'Authorization': 'Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1bmlxdWVfbmFtZSI6ImFkbWluIiwibmJmIjoxNzM4MDU1
NjEzLCJleHAiOjE3Mzg2NjA0MTMsImlhdCI6MTczODA1NTYxMywiaXNzIjoiSU5OT1ZBVElWRVRFQ0hOT0xPR
1kiLCJhdWQiOiJJTk5PVkFUSVZFVEVDSE5PTE9HWSJ9.zi55PwWV2dwGkzqXEI7Jk4R3SQnXbphnZyyif72QC
Ws'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)
.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetHopperOptions?
deviceID=SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};

Document Revision - v.1 ITL SDK Package Manual - 166

request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/GetHopperOptions?
deviceID=SMART_COIN_SYSTEM-COM10"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/GetHopperOptions?
deviceID=SMART_COIN_SYSTEM-COM10")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 167

•

•
•

REST API - SetHopperOptions

Description
Sets the hopper options on the device using the provided register values.

Endpoint SetHopperOptions

Method POST

URL {server_url}/api/CashDevice/SetHopperOptions

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body HopperOptionsRequest: The request body containing the hopper options Reg0 and Reg1.

byte reg_0: The value to set for the first hopper register.
byte reg_1: The value to set for the second hopper register.

Reg_0 bits and their meaning

Bit Parameter Function

0 Pay Mode 0x00 = Split by highest value (Default). The device will attempt to payout a
requested value by starting from the highest to the lowest coins available. This mode
will payout the minimum number of coins possible.

0x01 = Free pay. The device will payout a coin as it passes its discriminator system if
it fits into the current payout value and will leave enough of other coins to payout
the rest of the value. This may give a faster payout but could result in a large number
of coins of small denominations paid out.

1 Level Check 0x00 = Disabled. The device will not refer to the level counters when calculating if a
payout value can be made.

0x01 = Enabled (Default). The device will check the level counters and accept or
refuse a payout request based on levels and/or split of available levels.

2 Motor Speed 0x00 = Low speed. Payouts run at a lower motor speed.

0x01 = High Speed (default). The motors run at max speed for payouts.

Document Revision - v.1 ITL SDK Package Manual - 168

Reg_0 bits and their meaning

3 Cashbox Pay
Active

This bit is used in conjunction with Bit 0. If bit 3 is zero, then the Pay modes will be as
described in bit 0. If Bit 3 is set then coins routed to the cashbox will be used in coins
paid out of the front if they can fit into the current payout request. This is shown
below.

Pay Mode Type Bit 0 Bit 3
Free Play 1 0
Highest Split 0 1
All Route Free Pay 1 1
All Route Highest Split 0 1

4 Route 0 level
coins to cashbox

Set to 0x01 means that any coins detected with a level setting of 0 will be paid to the
cashbox, even if it is routed to the payout.

5 High Efficiency
Split

Default set to 0x01 to enable a more efficient, smarter coin payout algorithm which
will tend to use coins which have higher level counts - thus speeding up the payout
process.

6 Unknown to
Payout

Set to 0x01 means any unknown coins will be paid out during Smart Empty
(otherwise they will be routed to cashbox).

7 Value Added 0x00 = Coin added event
0x01 = Value added event

Reg_1 bits and their meaning

Bit Parameter Function

0 Reject Events Set to 1 gives reject event 0xBA Coin Rejected.

1 Reject Events
Full

Set to 1 gives reject event 0xBA with coin value if known.

2 Empty Route Set to 1 will route coins to payout when a Empty or Smart Empty command is
received.

3 Full to Cashbox Set to 1 will start moving coins to cashbox during payouts when full.

4 Value Coin Set to 1 gives individual coin payout events.

5 N/A Set to 0.

6 N/A Set to 0.

7 N/A Set to 0.

Document Revision - v.1 ITL SDK Package Manual - 169

Responses

Status Body Notes

200

Hopper options set successfully.

OK: If the hopper options were set
successfully.

400 Bad Request: If there is an error setting the
hopper options.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/SetHopperOptions?
deviceID=SMART_COIN_SYSTEM-COM10", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{" + "\n" +
@" ""Reg0"": 4," + "\n" +
@" ""Reg1"": 0" + "\n" +
@"}";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/SetHopperOptions?
deviceID=SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "Reg0": 4,
 "Reg1": 0
 })

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Document Revision - v.1 ITL SDK Package Manual - 170

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/SetHopperOptions?
deviceID=SMART_COIN_SYSTEM-COM10"

payload = json.dumps({
 "Reg0": 4,
 "Reg1": 0
})
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"Reg0\": 4,\r\n \"Reg1\":
0\r\n}");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/SetHopperOptions?
deviceID=SMART_COIN_SYSTEM-COM10")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 171

•

REST API - GetGlobalErrorCode

Description
Sets the globalErrorCode_0 and globalErrorCode_1 to the error code in the cash device

Endpoint GetGlobalErrorCode

Method GET

URL {server_url}/api/CashDevice/GetGlobalErrorCode

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses
Please refer to Global Error State for detailed information on responses.

Status Body Notes

200

SMART_COIN_SYSTEM-COM10: { ErrorCode0
= 00, ErrorCode1 = 00 }

OK: If the global error code was retrieved
successfully.

400 Bad Request: If there is an error retrieving
the global error code.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetGlobalErrorCode?
deviceID=SMART_COIN_SYSTEM-COM10", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 172

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetGlobalErrorCode?
deviceID=SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/GetGlobalErrorCode?
deviceID=SMART_COIN_SYSTEM-COM10"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/GetGlobalErrorCode?
deviceID=SMART_COIN_SYSTEM-COM10")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 173

•

•

•

•

•

•

•

•

•

REST API - GetServiceInformation

Description
Retrieves service information from the device based on the provided sub-command and formats the
information into a readable string.
The extracted information is formatted into a readable string and stored in the variable
service_information_string

Endpoint GetServiceInformation

Method GET

URL {server_url}/api/CashDevice/GetServiceInformation

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body byte subCommand: The sub-command to specify the type of service information to
retrieve. Possible values:

Byte: 0x00 - Service Type: Date Information - Description: Returns the current
raw byte date
Byte: 0x01 - Service Type: Note Information - Description: Extracts the number of
notes since various events such as maintenance reset, last download, power on,
and last jam.
Byte: 0x02 - Service Type: Accept Note Information - Description: Extracts the
number of accepted notes since maintenance reset, last download, and power
on.
Byte: 0x03 - Service Type: Jam Information - Description: Extracts the number of
jams since maintenance reset, last download, and in the last 1000 notes.
Byte: 0x04 - Service Type: Service Flags - Description: Returns current service flag
status

Responses

Status Body Notes

200

NV4000-COM5: { ServiceInformation =
(Note Information)
Notes Since Maintenance Reset: 11902
Notes Since Last Download: 461
Notes Since Power On: 2
Notes Since Last Jam: 2
 }

OK: If the service information is retrieved
and formatted.

400 Bad Request: If fails to retrieve the service
information.

Document Revision - v.1 ITL SDK Package Manual - 174

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetServiceInformation?deviceID=NV4000-
COM5", Method.Get);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"1" + "\n" +
@"" + "\n" +
@"";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetServiceInformation?deviceID=NV4000-
COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify(1)

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/GetServiceInformation?deviceID=NV4000-
COM5"

payload = json.dumps(1)
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Document Revision - v.1 ITL SDK Package Manual - 175

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "1\r\n\r\n");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/GetServiceInformation?deviceID=NV4000-
COM5")
 .method("GET", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 176

•

•

•

•

•
•

•

•

•

•

•

•

•

REST API - GetServiceInformationForModule

Description
Retrieves service information from the device based on the provided module and sub-command, and
formats the information into a readable string.
The extracted information is formatted into a readable string and stored in the variable
service_information_string

Endpoint GetServiceInformationForModule

Method GET

URL {server_url}/api/CashDevice/GetServiceInformationForModule

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body byte module: The module identifier specifying the type of module to retrieve
information from.

0x05: NV4000 Lifetime Counts.
0x00, 0x01, 0x02, 0x03: Smart Coin System modules including Primary Hopper,
Feeder, Secondary Hopper, and Lifter.

byte subCommand: The sub-command to specify the type of service information to
retrieve. Possible values:

Byte: 0x00 - Service Type: Service Status - Description: Returns the service status
of the device
Byte: 0x01 - Service Type: Next Service Due - Description: Returns the next
service due. Should be sent for each module
Byte: 0x02 - Service Type: Last Service Information - Description: Returns the last
3 services, 3 bytes per service, 9 bytes in total
Byte: 0x03 - Service Type: Performance Since Last Service - Description: Extracts
the number of coins processed, acceptance percentage, jams, and calibration
failures since the last service
Byte: 0x04 - Service Type: Service Flags - Description: Returns current service
flags
Byte: 0x05 - Service Type: Lifetime Counts - Description: Get the lifetime counts
of the module

{
 "Module": 5,
 "SubCommand": 0
}

Document Revision - v.1 ITL SDK Package Manual - 177

Responses

Status Body Notes

200

NV4000-COM5: { ServiceInformation =
(Lifetime Counts)
Total cycles: 32717
Power on count: 157
Power on time: 20580
 }

OK: If the service information is retrieved
and formatted.

400 Bad Request: If fails to retrieve the service
information.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetServiceInformationForModule?
deviceID=NV4000-COM5", Method.Get);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{" + "\n" +
@" ""Module"": 5," + "\n" +
@" ""SubCommand"": 0" + "\n" +
@"}" + "\n" +
@"";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetServiceInformationForModule?
deviceID=NV4000-COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "Module": 5,
 "SubCommand": 0
 })

};

Document Revision - v.1 ITL SDK Package Manual - 178

request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/GetServiceInformationForModule?
deviceID=NV4000-COM5"

payload = json.dumps({
 "Module": 5,
 "SubCommand": 0
})
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"Module\": 5,\r\n
\"SubCommand\": 0\r\n}\r\n");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/GetServiceInformationForModule?
deviceID=NV4000-COM5")
 .method("GET", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 179

•

•

•

•
•
•

REST API - SetServiceInformationMaintenanceReset

Description
Sets the maintenance reset information for the device using the provided ASCII bytes representing the week and
year of the maintenance reset.

Endpoint SetServiceInformationMaintenanceReset

Method POST

URL {server_url}/api/CashDevice/SetServiceInformationMaintenanceReset

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body ServiceInformationMaintenanceResetRequest: The request body containing
WeekNumber1AsciiByte, WeekNumber2AsciiByte, YearNumber1AsciiByte and
YearNumber2AsciiByte.

byte weekNumber1_ascii_byte: The module identifier specifying the type of
module to set the service information for.
byte weekNumber2_ascii_byte: The type of service being set.
byte yearNumber1_ascii_byte: The month of the service date.
byte yearNumber2_ascii_byte: The year of the service date.

{
 "WeekNumber1AsciiByte": 0,
 "WeekNumber2AsciiByte": 0,
 "YearNumber1AsciiByte": 0,
 "YearNumber2AsciiByte": 0
}

Responses

Status Body Notes

200

NV4000-COM5: Maintenance reset
information set successfully.

OK: If the maintenance reset information
was set successfully.

400 Bad Request: If there is an error setting the
maintenance reset information.

Document Revision - v.1 ITL SDK Package Manual - 180

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/SetServiceInformationMaintenanceReset?
deviceID=NV4000-COM5", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{" + "\n" +
@" ""WeekNumber1AsciiByte"": 0," + "\n" +
@" ""WeekNumber2AsciiByte"": 0," + "\n" +
@" ""YearNumber1AsciiByte"": 0," + "\n" +
@" ""YearNumber2AsciiByte"": 0" + "\n" +
@"}";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/SetServiceInformationMaintenanceReset?
deviceID=NV4000-COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "WeekNumber1AsciiByte": 0,
 "WeekNumber2AsciiByte": 0,
 "YearNumber1AsciiByte": 0,
 "YearNumber2AsciiByte": 0
 })

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/SetServiceInformationMaintenanceReset?
deviceID=NV4000-COM5"

payload = json.dumps({

Document Revision - v.1 ITL SDK Package Manual - 181

 "WeekNumber1AsciiByte": 0,
 "WeekNumber2AsciiByte": 0,
 "YearNumber1AsciiByte": 0,
 "YearNumber2AsciiByte": 0
})
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"WeekNumber1AsciiByte\":
0,\r\n \"WeekNumber2AsciiByte\": 0,\r\n \"YearNumber1AsciiByte\": 0,\r\n
\"YearNumber2AsciiByte\": 0\r\n}");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/SetServiceInformationMaintenanceReset?
deviceID=NV4000-COM5")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 182

•

•

REST API - SetNoPayinCount

Description
Sets the no-payin count for the device, which specifies the number of transactions allowed without pay-ins.

Endpoint SetNoPayinCount

Method POST

URL {server_url}/api/CashDevice/SetNoPayinCount

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body byte count: The number of transactions allowed without pay-ins.

Responses

Status Body Notes

200

SMART_COIN_SYSTEM-COM10:
{ NoPayinCount = 0 }

OK: If the no-payin count was set
successfully.

400 Bad Request: If there is an error setting the
no-payin count.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/SetNoPayinCount?
deviceID=SMART_COIN_SYSTEM-COM10", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"0";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 183

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/SetNoPayinCount?
deviceID=SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify(0)

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/SetNoPayinCount?
deviceID=SMART_COIN_SYSTEM-COM10"

payload = json.dumps(0)
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "0");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/SetNoPayinCount?
deviceID=SMART_COIN_SYSTEM-COM10")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 184

•

REST API - Purge

Description
Attempts to clear a coin that is stuck in a place that causes a calibration fault at start-up, typically behind the
payout flap on the hopper

Endpoint Purge

Method POST

URL {server_url}/api/CashDevice/Purge

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

SMART_COIN_SYSTEM-COM10: Purge
executed successfully.

OK: If the purge operation was executed
successfully.

400 Bad Request: If there is an error executing
the purge operation.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/Purge?deviceID=SMART_COIN_SYSTEM-
COM10", Method.Post);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 185

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/Purge?deviceID=SMART_COIN_SYSTEM-
COM10',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/Purge?deviceID=SMART_COIN_SYSTEM-COM10"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/Purge?deviceID=SMART_COIN_SYSTEM-COM10")
 .method("POST", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 186

•

•
•
•

REST API - PurgeDevice

Description
Attempts to clear a coin that is stuck in a place that causes a calibration fault at startup, typically behind the payout
flap on the hopper. Send a byte to specify a device.

Endpoint PurgeDevice

Method POST

URL {server_url}/api/CashDevice/PurgeDevice

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body byte device: The byte representing the specific device component to purge.
0x00 for Hopper
0x01 for Feeder

Responses

Status Body Notes

200

SMART_COIN_SYSTEM-COM10: Purge
executed successfully on specified
device.

OK: If the purge operation was executed
successfully.

400 Bad Request: If there is an error executing
the purge operation.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/PurgeDevice?
deviceID=SMART_COIN_SYSTEM-COM10", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"1";

Document Revision - v.1 ITL SDK Package Manual - 187

request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/PurgeDevice?
deviceID=SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify(1)

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/PurgeDevice?deviceID=SMART_COIN_SYSTEM-
COM10"

payload = json.dumps(1)
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "1");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/PurgeDevice?deviceID=SMART_COIN_SYSTEM-
COM10")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 188

•

•
•

•
•

•

REST API - PurgeDeviceHopper

Description
Attempts to clear a coin that is stuck in a place that causes a calibration fault at startup, typically behind the payout
flap on the hopper. Can be used for the Twin SMART Coin System.

Endpoint PurgeDevice

Method POST

URL {server_url}/api/CashDevice/PurgeDeviceHopper

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body PurgeDeviceHopperRequest: The request body containing Device and Hopper.
byte device: The byte representing the specific device component to purge.

0x00 for Hopper
0x01 for Feeder

byte hopper: The byte representing whether the purge is for the primary hopper
(0x00) or secondary hopper (0x01).

Responses

Status Body Notes

200

SMART_COIN_SYSTEM-COM10: Purge
executed successfully on specified
device and hopper.

OK: If the purge operation was executed
successfully.

400 Bad Request: If there is an error executing
the purge operation.

Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/PurgeDeviceHopper?
deviceID=SMART_COIN_SYSTEM-COM10", Method.Post);

Document Revision - v.1 ITL SDK Package Manual - 189

request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{" + "\n" +
@" ""Device"": 0," + "\n" +
@" ""Hopper"": 0" + "\n" +
@"}";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/PurgeDeviceHopper?
deviceID=SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "Device": 0,
 "Hopper": 0
 })

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/PurgeDeviceHopper?
deviceID=SMART_COIN_SYSTEM-COM10"

payload = json.dumps({
 "Device": 0,
 "Hopper": 0
})
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Document Revision - v.1 ITL SDK Package Manual - 190

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"Device\": 0,\r\n
\"Hopper\": 0\r\n}");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/PurgeDeviceHopper?
deviceID=SMART_COIN_SYSTEM-COM10")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 191

•

•

REST API - CoinStir

Description
Initiates a coin stirring operation for the specified duration in seconds

Endpoint CoinStir

Method POST

URL {server_url}/api/CashDevice/CoinStir

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body byte seconds: The duration for which to stir the coins, specified in seconds (1-255)

Responses

Status Body Notes

200

SMART_COIN_SYSTEM-COM10: Coin stir
executed successfully.

OK: If the coin stir operation is successfully
initiated.

400 Bad Request: If failed to execute coin stir
operation.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/CoinStir?deviceID=SMART_COIN_SYSTEM-
COM10", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"5" + "\n" +
@"";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 192

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/CoinStir?deviceID=SMART_COIN_SYSTEM-
COM10',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify(5)

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/CoinStir?deviceID=SMART_COIN_SYSTEM-
COM10"

payload = json.dumps(5)
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "5\r\n");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/CoinStir?deviceID=SMART_COIN_SYSTEM-
COM10")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 193

•

•
•

•

REST API - CoinStirWithMode

Description
Initiates a coin stirring operation for the specified duration in seconds, with an additional mode parameter.

Endpoint CoinStirWithMode

Method POST

URL {server_url}/api/CashDevice/CoinStirWithMode

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body CoinStirWithModeRequest: The request body containing Seconds and ModeByte.
byte Seconds: The duration for which to stir the coins, specified in seconds
(1-255)
byte ModeByte: An optional mode byte to specify additional behaviour e.g. move
coins to cashbox if set

{
 "Seconds": 5,
 "ModeByte": 1
}

Modes

Mode Description

0 Mixes the coins by performing a rotation of the coin hopper motor for a specified time.

1 Any denominations set to cashbox will also move coins to cashbox or if the level is greater than
the auto float setting then coins will also be sent to cashbox.

Responses

Status Body Notes

200

SMART_COIN_SYSTEM-COM10: Coin stir
with mode executed successfully.

OK: If the coin stir operation is successfully
initiated.

400 Bad Request: If failed to execute coin stir
with specified mode.

Document Revision - v.1 ITL SDK Package Manual - 194

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/CoinStirWithMode?
deviceID=SMART_COIN_SYSTEM-COM10", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{" + "\n" +
@" ""Seconds"": 5," + "\n" +
@" ""ModeByte"": 1" + "\n" +
@"}" + "\n" +
@"";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/CoinStirWithMode?
deviceID=SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "Seconds": 5,
 "ModeByte": 1
 })

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/CoinStirWithMode?
deviceID=SMART_COIN_SYSTEM-COM10"

payload = json.dumps({
 "Seconds": 5,
 "ModeByte": 1
})

Document Revision - v.1 ITL SDK Package Manual - 195

headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"Seconds\": 5,\r\n
\"ModeByte\": 1\r\n}\r\n");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/CoinStirWithMode?
deviceID=SMART_COIN_SYSTEM-COM10")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 196

•

•

REST API - GetCoinAcceptance

Description
Retrieves the coin acceptance status from the specified device and formats the data into a readable string

Endpoint GetCoinAcceptance

Method GET

URL {server_url}/api/CashDevice/GetCoinAcceptance

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body byte device: The byte representing the specific device component from which to
retrieve the coin acceptance status

Device

Byte Function Size

0 Primary Hopper acceptance percentage 1

1 Feeder acceptance percentage 1

2 Secondary Hopper acceptance percentage

Responses

Status Body Notes

200

SMART_COIN_SYSTEM-COM10:
{ CoinAcceptanceData = 64 }

OK: If the coin acceptance data was
retrieved successfully.

400

Failed to retrieve coin acceptance
data.

Bad Request: If there is an error retrieving
the coin acceptance data.

Document Revision - v.1 ITL SDK Package Manual - 197

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetCoinAcceptance?
deviceID=SMART_COIN_SYSTEM-COM10", Method.Get);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @" 0";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetCoinAcceptance?
deviceID=SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify(0)

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/GetCoinAcceptance?
deviceID=SMART_COIN_SYSTEM-COM10"

payload = json.dumps(0)
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Document Revision - v.1 ITL SDK Package Manual - 198

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, " 0");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/GetCoinAcceptance?
deviceID=SMART_COIN_SYSTEM-COM10")
 .method("GET", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 199

•

REST API - GetCoinsExit

Description
Retrieves the number of coins in the payout request and the number of coins seen at the exit sensor, to validate no
over-payment of coins.

Endpoint GetCoinsExit

Method GET

URL {server_url}/api/CashDevice/GetCoinsExit

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

SMART_COIN_SYSTEM-COM10:
{ CoinsPayoutRequest = 0,
CoinsSeenAtExitSensor = 0 }

OK: If the coins exit information was
retrieved successfully.

400 Bad Request: If there is an error retrieving
the coins exit information.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetCoinsExit?
deviceID=SMART_COIN_SYSTEM-COM10", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 200

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetCoinsExit?
deviceID=SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/GetCoinsExit?deviceID=SMART_COIN_SYSTEM-
COM10"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/GetCoinsExit?deviceID=SMART_COIN_SYSTEM-
COM10")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 201

•

•
•
•
•
•
•

REST API - SetRealTimeClock

Description
Sets the real-time clock on the device using the provided date and time bytes

Endpoint SetRealTimeClock

Method POST

URL {server_url}/api/CashDevice/SetRealTimeClock

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body SetRealTimeClockRequest: The request body containing Byte1, Byte2, Byte3, Byte4, Byte5 and
Byte6.

byte byte1: Day of the month (1-31)
byte byte2: Month of the year (1-12)
byte byte3: Year (0-99)
byte byte4: Hour of the day (0-23)
byte byte5: Minute of the hour (0-59)
byte byte6: Second of the minute (0-59)

Example Below: RealTimeClock = 27 November 2024 14:09:30

{
 "Byte1": 27,
 "Byte2": 11,
 "Byte3": 24,
 "Byte4": 14,
 "Byte5": 9,
 "Byte6": 30
}

Responses

Status Body Notes

200

NV4000-COM5: { RealTimeClock = 27
 November 2024 14:09:30 }

OK: If the real-time clock was set
successfully.

400 Bad Request: If there is an error setting the
real-time clock.

Document Revision - v.1 ITL SDK Package Manual - 202

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/SetRealTimeClock?deviceID=NV4000-COM5",
 Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{" + "\n" +
@" ""Byte1"": 27," + "\n" +
@" ""Byte2"": 11," + "\n" +
@" ""Byte3"": 24," + "\n" +
@" ""Byte4"": 14," + "\n" +
@" ""Byte5"": 9," + "\n" +
@" ""Byte6"": 30" + "\n" +
@"}" + "\n" +
@"";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/SetRealTimeClock?deviceID=NV4000-COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "Byte1": 27,
 "Byte2": 11,
 "Byte3": 24,
 "Byte4": 14,
 "Byte5": 9,
 "Byte6": 30
 })

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

Document Revision - v.1 ITL SDK Package Manual - 203

url = "http://localhost:5000/api/CashDevice/SetRealTimeClock?deviceID=NV4000-COM5"

payload = json.dumps({
 "Byte1": 27,
 "Byte2": 11,
 "Byte3": 24,
 "Byte4": 14,
 "Byte5": 9,
 "Byte6": 30
})
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"Byte1\": 27,\r\n
\"Byte2\": 11,\r\n \"Byte3\": 24,\r\n \"Byte4\": 14,\r\n \"Byte5\": 9,\r\n
\"Byte6\": 30\r\n}\r\n");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/SetRealTimeClock?deviceID=NV4000-COM5")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 204

•

REST API - GetRealTimeClock

Description
Retrieves the real-time clock from the SSP device and formats it into a human-readable string

Endpoint GetRealTimeClock

Method GET

URL {server_url}/api/CashDevice/GetRealTimeClock

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

NV4000-COM5: { RealTimeClock = 27
 November 2024 14:09:30 }

OK: If the real-time clock was retrieved
successfully.

400 Bad Request: If there is an error getting the
real-time clock.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetRealTimeClock?deviceID=NV4000-COM5",
 Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 205

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetRealTimeClock?deviceID=NV4000-COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/GetRealTimeClock?deviceID=NV4000-COM5"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/GetRealTimeClock?deviceID=NV4000-COM5")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 206

•

•
•
•

REST API - SetCashboxLevels

Description
Sets the coin levels of the cashbox

Endpoint SetCashboxLevels

Method POST

URL {server_url}/api/CashDevice/SetCashboxLevels

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body SetCashboxLevelsRequest: The request body containing NumCoinsToAdd, Denomination and
CountryCode.

ushort NumCoinsToAdd: Number of coins to add to level (0 will clear the level)
uint Denomination: Value of denomination to set
string CountryCode: ASCII country code of denomination

{
 "NumCoinsToAdd": 10,
 "Denomination": 10,
 "CountryCode": "{{Currency}}"
}

Responses

Status Body Notes

200

SMART_COIN_SYSTEM-COM10: Cashbox
levels set successfully.

OK: If the cashbox levels were set
successfully.

400 Bad Request: If there is an error setting the
cashbox levels.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,

Document Revision - v.1 ITL SDK Package Manual - 207

};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/SetCashboxLevels?
deviceID=SMART_COIN_SYSTEM-COM10", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{" + "\n" +
@" ""numCoinsToAdd"": 10," + "\n" +
@" ""denomination"": 10," + "\n" +
@" ""countryCode"": ""ITL""" + "\n" +
@"}" + "\n" +
@"";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/SetCashboxLevels?
deviceID=SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "numCoinsToAdd": 10,
 "denomination": 10,
 "countryCode": "ITL"
 })

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/SetCashboxLevels?
deviceID=SMART_COIN_SYSTEM-COM10"

payload = json.dumps({
 "numCoinsToAdd": 10,
 "denomination": 10,
 "countryCode": "ITL"
})
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

Document Revision - v.1 ITL SDK Package Manual - 208

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"numCoinsToAdd\": 10,\r\n
\"denomination\": 10,\r\n \"countryCode\": \"ITL\"\r\n}\r\n");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/SetCashboxLevels?
deviceID=SMART_COIN_SYSTEM-COM10")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 209

•

REST API - ClearCashboxLevels

Description
Clears the cashbox levels on the SSP device.

Endpoint ClearCashboxLevels

Method POST

URL {server_url}/api/CashDevice/ClearCashboxLevels

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

SMART_COIN_SYSTEM-COM10: Cashbox
levels cleared successfully.

OK: If the cashbox levels were cleared
successfully.

400 Bad Request: If there is an error clearing the
cashbox levels.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/ClearCashboxLevels?
deviceID=SMART_COIN_SYSTEM-COM10", Method.Post);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 210

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/ClearCashboxLevels?
deviceID=SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/ClearCashboxLevels?
deviceID=SMART_COIN_SYSTEM-COM10"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/ClearCashboxLevels?
deviceID=SMART_COIN_SYSTEM-COM10")
 .method("POST", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 211

•
•

•

REST API - GetCashboxLevels

Description
Retrieves the coins that have been flushed down to the cashbox.
Reports in the same format as GetAllLevels()

Endpoint GetCashboxLevels

Method GET

URL {server_url}/api/CashDevice/GetCashboxLevels

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

SMART_COIN_SYSTEM-COM10:
{ CashboxLevels = Number of
denominations in device: 2
10 x 10 ITL
0 x 50 ITL
Quantity of unknown coins: 0
 }

OK: If the cashbox levels were retrieved
successfully.

400 Bad Request: If there is an error retrieving
the cashbox levels.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetCashboxLevels?
deviceID=SMART_COIN_SYSTEM-COM10", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");

Document Revision - v.1 ITL SDK Package Manual - 212

RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetCashboxLevels?
deviceID=SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/GetCashboxLevels?
deviceID=SMART_COIN_SYSTEM-COM10"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/GetCashboxLevels?
deviceID=SMART_COIN_SYSTEM-COM10")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 213

•

•

•
•

•

REST API - SetSorterRoute

Description
Sets the route for the specified denomination to go to either PRIMARY or SECONDARY hopper of the Twin SMART
Coin System

Endpoint SetSorterRoute

Method POST

URL {server_url}/api/CashDevice/SetSorterRoute

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body SetSorterRouteRequest: The request body containing ValueCountryCode and SorterRoute.

ValueCountryCode valueCountryCode: is an object representing the denomination and
its respective country code:

UInt32 Value: Denomination value e.g 500, 1000 etc
string CountryCode: The country code of the currency e.g. “GBP”, “EUR”, “USD”
etc

byte sorterRoute: The sorter route to set for the specified denomination. Use 0x00 for
PRIMARY hopper and 0x01 for SECONDARY hopper.

{
 "Value": 100, "CountryCode": "{{Currency}}",
 "SorterRoute": 0
}

Responses

Status Body Notes

200

TWIN_SMART_COIN_SYSTEM-COM10: Sorter
route set successfully.

OK: If the sorter route was set successfully.

400 Bad Request: If there is an error setting the
sorter route.

Document Revision - v.1 ITL SDK Package Manual - 214

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/SetSorterRoute?
deviceID=TWIN_SMART_COIN_SYSTEM-COM10", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{" + "\n" +
@" ""Value"": 100, ""CountryCode"": ""ITL""," + "\n" +
@" ""SorterRoute"": 0" + "\n" +
@"}" + "\n" +
@"";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/SetSorterRoute?
deviceID=TWIN_SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "Value": 100,
 "CountryCode": "ITL",
 "SorterRoute": 0
 })

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/SetSorterRoute?
deviceID=TWIN_SMART_COIN_SYSTEM-COM10"

payload = json.dumps({
 "Value": 100,
 "CountryCode": "ITL",

Document Revision - v.1 ITL SDK Package Manual - 215

 "SorterRoute": 0
})
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"Value\": 100,
\"CountryCode\": \"ITL\",\r\n \"SorterRoute\": 0\r\n}\r\n");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/SetSorterRoute?
deviceID=TWIN_SMART_COIN_SYSTEM-COM10")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 216

•

REST API - GetSorterRouteAssignment

Description
Retrieves sorter route assignments.

Endpoint GetSorterRouteAssignment

Method GET

URL {server_url}/api/CashDevice/GetSorterRouteAssignment

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

[
 {
 "currentSorterRoute":0
 },
 {
 "currentSorterRoute":1
 },
 {
 "currentSorterRoute":0
 }
]

Ok: If the sorter route assignments were
retrieved successfully.

404 Not Found: If no sorter route assignments
were found.

 400 Bad Request: If there is an error retrieving
the sorter route assignments.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{

Document Revision - v.1 ITL SDK Package Manual - 217

 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetSorterRouteAssignment?
deviceID=TWIN_SMART_COIN_SYSTEM-COM10", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetSorterRouteAssignment?
deviceID=TWIN_SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/GetSorterRouteAssignment?
deviceID=TWIN_SMART_COIN_SYSTEM-COM10"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/GetSorterRouteAssignment?
deviceID=TWIN_SMART_COIN_SYSTEM-COM10")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 218

•
•

•

REST API - SetPayoutLimit

Description
Limits the number of coins that can be dispensed in one transaction
Should be sent during the setup of the device

Endpoint SetPayoutLimit

Method POST

URL {server_url}/api/CashDevice/SetPayoutLimit

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body ushort value: The maximum number of coins that can be dispensed in one transaction

Responses

Status Body Notes

200

TWIN_SMART_COIN_SYSTEM-COM10: Payout
limit set successfully.

OK: If the payout limit was set successfully.

400 Bad Request: If there is an error setting the
payout limit.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/SetPayoutLimit?
deviceID=TWIN_SMART_COIN_SYSTEM-COM10", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"5";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 219

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/SetPayoutLimit?
deviceID=TWIN_SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify(5)

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/SetPayoutLimit?
deviceID=TWIN_SMART_COIN_SYSTEM-COM10"

payload = json.dumps(5)
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "5");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/SetPayoutLimit?
deviceID=TWIN_SMART_COIN_SYSTEM-COM10")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 220

•

REST API - GetPayoutCount

Description
Gets the number of coins the hopper wants to pay out after it calculates the coin split on a test payout.

Endpoint GetPayoutCount

Method GET

URL {server_url}/api/CashDevice/GetPayoutCount

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

TWIN_SMART_COIN_SYSTEM-COM10:
{ PayoutCount = 0 }

OK: If the payout count was retrieved
successfully.

400 Bad Request: If there is an error retrieving
the payout count.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetPayoutCount?
deviceID=TWIN_SMART_COIN_SYSTEM-COM10", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 221

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetPayoutCount?
deviceID=TWIN_SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/GetPayoutCount?
deviceID=TWIN_SMART_COIN_SYSTEM-COM10"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/GetPayoutCount?
deviceID=TWIN_SMART_COIN_SYSTEM-COM10")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 222

•

•
•

•

•

•

•

•

•

•

•

•

REST API - SetTwInMode

Description
A command to select the operation mode of the Twin SCS

Endpoint SetTwInMode

Method POST

URL {server_url}/api/CashDevice/SetTwInMode

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body byte twinMode: The operation mode. Currently there are 4 modes available:
0: Normal Smart Coin System: The master SCS works alone as a normal SCS.
There is no need to connect the secondary hopper as it is unused in this mode.
1: Twin Smart Coin System: The unit works as a complete Twin Smart Coin
System. The secondary hopper needs to be connected to the main hopper.
2: Twin Single Smart Coin System: The Twin Feeder is able to pay in coins to both
routes (main hopper or lateral) based on host selection, but there is no control
over the secondary hopper. That means in this mode only the main hopper is in
control for the payouts. The slave hopper, if connected, should be controlled by
the host individually. For this mode the following commands/events can be used
by the host

Get coin amount to lateral route: To account for the coins sent to the
lateral path.
Set coin amount to lateral route: To set/reset the coins amount to the
lateral path.
When working with individual coin events during pay-in (event coin credit
0x0D in CC2), every coin paid-in reports the value and the country code as
usual, but also an extra byte with the route (main hopper or lateral). In
this way the coins sent to lateral can be accounted in this Single Twin
mode during a pay-in.

3: Twin 1ec Balanced mode: This mode is the same as the Twin mode 0x01, but it
handles the EUR 1ec in a way that the quantities are balanced in both hoppers.
This mode improves the quantity of 1ec coins that the system can handle in the
hoppers. Please note:

During payins, the 1ec coins will be routed to the hopper with less
quantity of coins.
During payouts, the 1ec coins will be taken from the hopper with more
1ec coins (or from both if necessary).
If the set coin amount command is sent, the levels will be updated in the
slave hopper only (as for operation it might be easer to manipulate the
levels). If a level 0 is sent both hoppers levels will be cleared of 1ec.

Document Revision - v.1 ITL SDK Package Manual - 223

Responses

Status Body Notes

200

TWIN_SMART_COIN_SYSTEM-COM10: Twin
mode set successfully.

OK: If the twin mode was set successfully.

400 Bad Request: If there is an error setting the
twin mode.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/SetTwInMode?
deviceID=TWIN_SMART_COIN_SYSTEM-COM10", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhbG.....");
var body = @"1";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/SetTwInMode?
deviceID=TWIN_SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify(1)

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

Document Revision - v.1 ITL SDK Package Manual - 224

url = "http://localhost:5000/api/CashDevice/SetTwInMode?
deviceID=TWIN_SMART_COIN_SYSTEM-COM10"

payload = json.dumps(1)
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "1");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/SetTwInMode?
deviceID=TWIN_SMART_COIN_SYSTEM-COM10")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 225

•

REST API - ExtendedGetDatasetVersion

Description
Command to return a variable length ASCII array containing the installed dataset version of the attached device
that appends compilation date/time

Endpoint ExtendedGetDatasetVersion

Method GET

URL {server_url}/api/CashDevice/ExtendedGetDatasetVersion

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

NV4000-COM5: { ExtendedDatasetVersion
= EUR41044_25.09.24_13:39:30 }

OK: If the extended dataset version was
retrieved successfully.

400 Bad Request: If there is an error retrieving
the extended dataset version.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/ExtendedGetDatasetVersion?
deviceID=NV4000-COM5", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 226

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/ExtendedGetDatasetVersion?
deviceID=NV4000-COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/ExtendedGetDatasetVersion?
deviceID=NV4000-COM5"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/ExtendedGetDatasetVersion?
deviceID=NV4000-COM5")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 227

•

REST API - ExtendedGetFirmwareVersion

Description
Command to return a variable length ASCII array containing the full firmware version of the attached device that
appends compilation date/time

Endpoint ExtendedGetFirmwareVersion

Method GET

URL {server_url}/api/CashDevice/ExtendedGetFirmwareVersion

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

NV4000-COM5:
{ ExtendedFirmwareVersion =
NVS2004301066NV4_11.11.24_16: 33: 37
}

OK: If the extended firmware version was
retrieved successfully.

400 Bad Request: If there is an error retrieving
the extended firmware version.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/ExtendeDGetFirmwareVersion?
deviceID=NV4000-COM5", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 228

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/ExtendeDGetFirmwareVersion?
deviceID=NV4000-COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/ExtendeDGetFirmwareVersion?
deviceID=NV4000-COM5"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/ExtendeDGetFirmwareVersion?
deviceID=NV4000-COM5")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 229

•

REST API - comPortReadError

Description
Checks if there is any read error on the COM port

Endpoint comPortReadError

Method GET

URL {server_url}/api/CashDevice/comPortReadError

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

NV4000-COM5: { ComPortReadError =
False
}

OK: If the com port read error status was
retrieved successfully.

400 Bad Request

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/comPortReadError?deviceID=NV4000-COM5",
 Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 230

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/comPortReadError?deviceID=NV4000-COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/comPortReadError?deviceID=NV4000-COM5"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/comPortReadError?deviceID=NV4000-COM5")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 231

•

REST API - DeviceState_StartupReady

Description
Checks if the device state indicates that the device is ready for startup.

Endpoint DeviceState_StartupReady

Method POST

URL {server_url}/api/CashDevice/DeviceState_StartupReady

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body DeviceState deviceStateToCheck: The device state to check

Responses

Status Body Notes

200

NV4000-COM5: { StartupReady = False
}

OK: If the device state is ready for startup.

400 Bad Request

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/DeviceState_StartupReady?
deviceID=NV4000-COM5", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"3";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 232

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/DeviceState_StartupReady?
deviceID=NV4000-COM5',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify(3)

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/DeviceState_StartupReady?deviceID=NV4000-
COM5"

payload = json.dumps(3)
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "3");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/DeviceState_StartupReady?
deviceID=NV4000-COM5")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 233

•

REST API - GetLifterStatus

Description
Allows to get the current status of the lifter

Endpoint GetLifterStatus

Method GET

URL {server_url}/api/CashDevice/GetLifterStatus

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

SMART_COIN_SYSTEM-COM10:
{ LifterConnected = True,
LifterOptoClear = True, LifterJammed
= False }

OK: If the lifter status was retrieved
successfully.

400 Bad Request: If there is an error retrieving
the lifter status.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetLifterStatus?
deviceID=SMART_COIN_SYSTEM-COM10", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 234

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetLifterStatus?
deviceID=SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/GetLifterStatus?
deviceID=SMART_COIN_SYSTEM-COM10"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/GetLifterStatus?
deviceID=SMART_COIN_SYSTEM-COM10")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 235

•

REST API - GetLastRejectCode

Description
Gets the reason the device rejected the last note

Endpoint GetLastRejectCode

Method GET

URL {server_url}/api/CashDevice/GetLastRejectCode

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body None

Responses

Status Body Notes

200

SPECTRAL_PAYOUT-COM5:
{ RejectCategory = Reject Reason:
Channel Inhibit
}

OK: If the last reject code was retrieved
successfully.

400 Bad Request: If there is an error retrieving
the last reject code.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/GetLastRejectCode?
deviceID=SPECTRAL_PAYOUT-COM5", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 236

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/CashDevice/GetLastRejectCode?
deviceID=SPECTRAL_PAYOUT-COM5',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/CashDevice/GetLastRejectCode?
deviceID=SPECTRAL_PAYOUT-COM5"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/GetLastRejectCode?
deviceID=SPECTRAL_PAYOUT-COM5")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 237

•

REST API - DeviceErrorLimpMode

Description
Checks if the device error indicates that the device is in limp mode

Endpoint DeviceErrorLimpMode

Method POST

URL {server_url}/api/CashDevice/DeviceErrorLimpMode

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body DeviceError deviceErrorToCheck: The device error to check

Responses

Status Body Notes

200

SMART_COIN_SYSTEM-COM10: { LimpMode =
False }

OK: If the device error limp mode status
was retrieved successfully.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/DeviceErrorLimpMode?
deviceID=SMART_COIN_SYSTEM-COM10", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"2";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 238

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/DeviceErrorLimpMode?
deviceID=SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify(2)

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/DeviceErrorLimpMode?
deviceID=SMART_COIN_SYSTEM-COM10"

payload = json.dumps(2)
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "2");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/DeviceErrorLimpMode?
deviceID=SMART_COIN_SYSTEM-COM10")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 239

•

REST API - DeviceStateLimpMode

Description
Checks if the device state indicates that the device is in limp mode

Endpoint DeviceStateLimpMode

Method POST

URL {server_url}/api/CashDevice/DeviceStateLimpMode

Parameters deviceID (string): The value of "deviceID" obtained from the response to the
OpenConnection request

Authorisatio
n

Bearer Token

Body DeviceState deviceStateToCheck: The device state to check

Responses

Status Body Notes

200

SMART_COIN_SYSTEM-COM10: { LimpMode =
False }

OK: If the device state limp mode status
was retrieved successfully.

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/CashDevice/DeviceStateLimpMode?
deviceID=SMART_COIN_SYSTEM-COM10", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"2" + "\n" +
@"";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

Document Revision - v.1 ITL SDK Package Manual - 240

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/CashDevice/DeviceStateLimpMode?
deviceID=SMART_COIN_SYSTEM-COM10',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify(2)

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests
import json

url = "http://localhost:5000/api/CashDevice/DeviceStateLimpMode?
deviceID=SMART_COIN_SYSTEM-COM10"

payload = json.dumps(2)
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "2\r\n");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/CashDevice/DeviceStateLimpMode?
deviceID=SMART_COIN_SYSTEM-COM10")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 241

REST API - StartDownload

Description
Begins the download of the specified firmware/dataset file to the ITL cash device.

Endpoint StartDownload

Method POST

URL {server_url}/api/Download/StartDownload

Parameters None

Authorisatio
n

Bearer Token

Body

{
 "DownloadFileName": "{{DownloadFilePath}}\\{{UpdateFileName}}.bv1",
 "ComPort": "{{ComPort}}",
 "SspAddress": {{SspAddress}}
}

Body Parameters

Parameter Type Description Required Default

DownloadFileName string Full path to the firmware/
dataset file (.bv1)

Yes

ComPort string The COM port to use Yes

SSPAddress byte SSP address Yes

PacketDownload boolean Enable Packet Download

No true

BaudRate int The data transfer rate No 115200

Responses

Status Body Notes

200

Download initiated. Check progress
with /GetDownloadStatus.

OK: Successfully initiated download.

Document Revision - v.1 ITL SDK Package Manual - 242

Status Body Notes

400

Invalid parameters. Please provide a
valid file name and COM port.

Bad Request

500

Failed to initiate download.

Internal Server Error

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/Download/StartDownload", Method.Post);
request.AddHeader("Content-Type", "application/json");
request.AddHeader("Authorization", "Bearer eyJhb.....");
var body = @"{" + "\n" +
@" ""DownloadFileName"": ""C:\\InnovativeTechnology\\UpdateFile\
\ITL01003_NVS2004311048000_IF_01.bv1""," + "\n" +
@" ""ComPort"": ""COM5""," + "\n" +
@" ""SspAddress"": 0" + "\n" +
@"}";
request.AddStringBody(body, DataFormat.Json);
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'POST',
 'url': 'http://localhost:5000/api/Download/StartDownload',
 'headers': {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
 },
 body: JSON.stringify({
 "DownloadFileName": "C:\\InnovativeTechnology\\UpdateFile\
\ITL01003_NVS2004311048000_IF_01.bv1",
 "ComPort": "COM5",
 "SspAddress": 0
 })

};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);

Document Revision - v.1 ITL SDK Package Manual - 243

});

Python

import requests
import json

url = "http://localhost:5000/api/Download/StartDownload"

payload = json.dumps({
 "DownloadFileName": "C:\\InnovativeTechnology\\UpdateFile\
\ITL01003_NVS2004311048000_IF_01.bv1",
 "ComPort": "COM5",
 "SspAddress": 0
})
headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\r\n \"DownloadFileName\": \"C:\\
\\InnovativeTechnology\\\\UpdateFile\\\\ITL01003_NVS2004311048000_IF_01.bv1\",\r\n
\"ComPort\": \"COM5\",\r\n \"SspAddress\": 0\r\n}");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/Download/StartDownload")
 .method("POST", body)
 .addHeader("Content-Type", "application/json")
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 244

REST API - GetDownloadStatus

Description
Used to monitor the progress of a firmware/dataset update to the ITL cash device in real-time.

Endpoint GetDownloadStatus

Method Get

URL {server_url}/api/Download/GetDownloadStatus

Parameters None

Authorisatio
n

Bearer Token

Body None

Responses

Field Type Description

State string Current state of the download:

· IDLE

· UPDATING

· COMPLETE

CurrentDownloadBlock integer The current download block number

TotalDownloadBlock integer Total number of download blocks

Success boolean True if the download is complete, otherwise
false

Example Responses

Status Body Notes

200

{
 "state": "UPDATING",
 "currentDownloadBlock": 4453,
 "totalDownloadBlock": 4655,
 "success": false
}

OK: Successfully initiated download.

Document Revision - v.1 ITL SDK Package Manual - 245

Status Body Notes

400 Bad Request

500 Internal Server Error

Code Examples

C#

var options = new RestClientOptions("http://localhost:5000")
{
 MaxTimeout = -1,
};
var client = new RestClient(options);
var request = new RestRequest("/api/Download/GetDownloadStatus", Method.Get);
request.AddHeader("Authorization", "Bearer eyJhb.....");
RestResponse response = await client.ExecuteAsync(request);
Console.WriteLine(response.Content);

NodeJS

var request = require('request');
var options = {
 'method': 'GET',
 'url': 'http://localhost:5000/api/Download/GetDownloadStatus',
 'headers': {
 'Authorization': 'Bearer eyJhb.....'
 }
};
request(options, function (error, response) {
 if (error) throw new Error(error);
 console.log(response.body);
});

Python

import requests

url = "http://localhost:5000/api/Download/GetDownloadStatus"

payload = {}
headers = {
 'Authorization': 'Bearer eyJhb.....'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Document Revision - v.1 ITL SDK Package Manual - 246

Java

OkHttpClient client = new OkHttpClient().newBuilder()
 .build();
MediaType mediaType = MediaType.parse("text/plain");
RequestBody body = RequestBody.create(mediaType, "");
Request request = new Request.Builder()
 .url("http://localhost:5000/api/Download/GetDownloadStatus")
 .method("GET", body)
 .addHeader("Authorization", "Bearer eyJhb.....")
 .build();
Response response = client.newCall(request).execute();

Document Revision - v.1 ITL SDK Package Manual - 247

•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Cash Device C#.NET API

Change History

Version Date Comment

1 14 Jan 2025 Initial Release

Contents
Public Read-Only Variables of CashDevice class
Public Events of CashDevice class
Public Methods of CashDevice class

Public Method: Open
Public Method: GetUnitInfo
Public Method: Connect
Public Method: startRunning
Public Method: stopRunning
Public Method: Close
Public Method: Disconnect
Public Method: SetDenominationInhibitsSingleCurrency
Public Method: SetDenominationInhibits
Public Method: SetDenominationInhibitSingleCurrency
Public Method: (1) SetDenominationInhibit
Public Method: (2) SetDenominationInhibit
Public Method: SetDenominationLevel
Public Method: DispenseValueSingleCurrency
Public Method: DispenseValue
Public Method: (1) PayoutByDenomination
Public Method: (2) PayoutByDenomination
Public Method: Float
Public Method: SetCashBoxPayoutLimit
Public Method: SmartEmpty
Public Method: SetDenominationRouteSingleCurrency
Public Method: (1) SetDenominationRoute
Public Method: (2) SetDenominationRoute
Public Method: EnableAcceptor
Public Method: DisableAcceptor
Public Method: EnablePayout
Public Method: DisablePayout
Public Method: HaltPayout
Public Method: ResetDevice
Public Method: SendCustomCommand
Public Method: EnableCoinMechOrFeeder
Public Method: Replenish
Public Method: RefillMode
Public Method: AcceptFromEscrow
Public Method: ReturnFromEscrow
Public Method: KeyExchangelimit32bit
Public Method: GetAllLevels
Public Method: GetStoredValue
Public Method: GetHopperOptions
Public Method: SetHopperOptions
Public Method: LogRawPackets
Public Method: GetGlobalErrorCode
Public Method: (1) GetServiceInformation
Public Method: (2) GetServiceInformation

Document Revision - v.1 ITL SDK Package Manual - 248

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Public Method: SetServiceInformation
Public Method: SetServiceInformation_MaintenanceReset
Public Method: SetNoPayinCount
Public Method: (1) Purge
Public Method: (2) Purge
Public Method: (3) Purge
Public Method: GetCoinAcceptance(byte device)
Public Method: GetCounters()
Public Method: (1) CoinStir
Public Method: (2) CoinStir
Public Method: GetCoinsExit
Public Method: SetRealTimeClock
Public Method: GetRealTimeClock
Public Method: SetCashboxLevels
Public Method: ClearCashboxLevels
Public Method: GetCashboxLevels
Public Method: SetSorterRoute
Public Method: SetPayoutLimit
Public Method: GetPayoutCount
Public Method: SetTwinMode
Public Method: ExtendedGetDatasetVersion
Public Method: ExtendedGetFirmwareVersion
Public Method: comPortReadError
Public Method: DeviceState_StartupReady
Public Method: Get_Lifter_Status
Public Method: GetLastRejectCode
Public Method: Set_Denomination_Level
Public Method: DeviceError_LimpMode
Public Method: DeviceState_LimpMode
Public Method: GetBarcodeData
Public Method: SetBarcodeReaderConfiguration
Public Method: GetBarcodeReaderConfiguration
Public Method: SetBarcodeInhibit
Public Method: GetBarcodeInhibit
Public Method: DownloadFirmware

Document Revision - v.1 ITL SDK Package Manual - 249

Public Read-Only Variables of CashDevice class

Variable Name Description

comPort The communication port name used by the device.

deviceModel The model of the device.

deviceError The current error status of the device.

isOpen Indicates whether the device is open.

isDownloading Indicates whether a download operation is in progress.

firmware The firmware version of the device.

extendedFirmware The extended firmware version of the device.

dataset The dataset version of the device.

extendedDataset The extended dataset version of the device.

mainSerialNumber The main serial number of the device.

recycler1SerialNumber The serial number of the first recycler.

recycler2SerialNumber The serial number of the second recycler.

recycler3SerialNumber The serial number of the third recycler.

recycler4SerialNumber The serial number of the fourth recycler.

interfaceSerialNumber The serial number of the interface module.

dockSerialNumber The serial number of the docking station.

replenishmentCassetteSerialNumber The serial number of the replenishment cassette.

conveyorSerialNumber The serial number of the conveyor module.

coinFeederSerialNumber The serial number of the coin feeder module.

secondaryHopperSerialNumber The serial number of the secondary hopper.

payoutModuleSerialNumber The serial number of the payout module.

Document Revision - v.1 ITL SDK Package Manual - 250

Variable Name Description

coinLifterSerialNumber The serial number of the coin lifter module.

mainSerialNumberValid Indicates whether the main serial number is valid.

recycler1SerialNumberValid Indicates whether the serial number of the first recycler is
valid.

recycler2SerialNumberValid Indicates whether the serial number of the second recycler
is valid.

recycler3SerialNumberValid Indicates whether the serial number of the third recycler is
valid.

recycler4SerialNumberValid Indicates whether the serial number of the fourth recycler
is valid.

interfaceSerialNumberValid Indicates whether the serial number of the interface
module is valid.

dockSerialNumberValid Indicates whether the serial number of the docking station
is valid.

replenishmentCassetteSerialNumberValid Indicates whether the serial number of the replenishment
cassette is valid.

conveyorSerialNumberValid Indicates whether the serial number of the conveyor
module is valid.

coinFeederSerialNumberValid Indicates whether the serial number of the coin feeder
module is valid.

secondaryHopperSerialNumberValid Indicates whether the serial number of the secondary
hopper is valid.

payoutModuleSerialNumberValid Indicates whether the serial number of the payout module
is valid.

coinLifterSerialNumberValid Indicates whether the serial number of the coin lifter
module is valid.

buildRevisionString The build revision string of the device.

initialMainBuildRevision The initial main build revision of the device.

mainBuildRevisionString The main build revision string of the device.

coinFeederBuildRevisionString The build revision string of the coin feeder.

Document Revision - v.1 ITL SDK Package Manual - 251

Variable Name Description

seondaryHopperBuildRevisionString The build revision string of the secondary hopper.

coinLifterBuildRevisionString The build revision string of the coin lifter.

payoutModuleRevisionString The build revision string of the payout module.

primaryHopperAsciiTypeString The ASCII type string of the primary hopper.

coinFeederAsciiTypeString The ASCII type string of the coin feeder.

majorBuildRevision The major build revision number.

minorBuildRevision The minor build revision number.

reg_0 The value of register 0.

reg_1 The value of register 1.

reg_0_hex_string The hexadecimal string representation of register 0.

reg_1_hex_string The hexadecimal string representation of register 1.

globalErrorCode_0 The global error code 0.

globalErrorCode_1 The global error code 1.

unit_info_retrieved Indicates whether the unit information was retrieved.

lifterConnected Indicates whether the lifter is connected.

lifterOptoClear Indicates whether the lifter opto is clear.

lifterJammed Indicates whether the lifter is jammed.

lastGetLevelsSuccessful Indicates whether the last get levels operation was
successful.

service_information_string The service information string.

noPayinCount The number of no payin counts.

coinAcceptance_string The coin acceptance string.

counters_string The counters string.

Document Revision - v.1 ITL SDK Package Manual - 252

Variable Name Description

coins_payout_request The number of coins requested for payout.

coins_seen_at_exit_sensor The number of coins seen at the exit sensor.

real_time_clock_string The real-time clock string.

cashbox_levels_string The cashbox levels string.

payout_count The payout count.

commandFailedDetailsString The details string for command failures.

maintenanceRequiredDetailsString The details string for maintenance required.

lifterEventString The lifter event string.

rejectCategory The reject category.

error_during_payout_details_string The details string for errors during payout.

ticketStatus The status of the barcode ticket.

barcode_ascii_data The ASCII data of the barcode.

barCodeHardwareStatus The hardware status of the barcode reader.

readersEnabled The enabled status of the barcode readers.

barCodeFormat The format of the barcode.

numberOfCharacters The number of characters in the barcode.

barCodeInhibit The inhibit status of the barcode reader.

RC_CurrentMode The current mode of the replenishment cassette.

currentRC_PayoutValue The current payout value of the replenishment cassette.

RC_DenominationForPayout The denomination for payout in the replenishment
cassette.

unknown_stored_in_cashbox The number of unknown items stored in the cashbox.

sspProtocolVersion The SSP protocol version.

Document Revision - v.1 ITL SDK Package Manual - 253

Variable Name Description

downloadStatus The download status.

cashDeviceModules An array of cash device modules.

dispenseState The dispense transaction state.

noteInEscrow Indicates whether there is a note in escrow.

isMultiCurrency Indicates whether the device supports multiple currencies.

Document Revision - v.1 ITL SDK Package Manual - 254

Public Events of CashDevice class

Event Name Description

DeviceStateChangedEvent Triggered when the device state changes.

DeviceModuleStateChangedEvent Triggered when the state of a device module changes.

CashEvent Triggered during cash operations.

ReplenishEvent Triggered during a replenish operation.

DispenserTransactionEvent Triggered during a dispenser transaction.

DownloadStateEvent Triggered when the download state changes.

DownloadBlockEvent Triggered when a download block event occurs.

SetDenominationRouteFinishedEvent Triggered when the denomination route setting operation is
finished.

Document Revision - v.1 ITL SDK Package Manual - 255

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Public Methods of CashDevice class

Methods
Public Method: Open
Public Method: GetUnitInfo
Public Method: Connect
Public Method: startRunning
Public Method: stopRunning
Public Method: Close
Public Method: Disconnect
Public Method: SetDenominationInhibitsSingleCurrency
Public Method: SetDenominationInhibits
Public Method: SetDenominationInhibitSingleCurrency
Public Method: (1) SetDenominationInhibit
Public Method: (2) SetDenominationInhibit
Public Method: SetDenominationLevel
Public Method: DispenseValueSingleCurrency
Public Method: DispenseValue
Public Method: (1) PayoutByDenomination
Public Method: (2) PayoutByDenomination
Public Method: Float
Public Method: SetCashBoxPayoutLimit
Public Method: SmartEmpty
Public Method: SetDenominationRouteSingleCurrency
Public Method: (1) SetDenominationRoute
Public Method: (2) SetDenominationRoute
Public Method: EnableAcceptor
Public Method: DisableAcceptor
Public Method: EnablePayout
Public Method: DisablePayout
Public Method: HaltPayout
Public Method: ResetDevice
Public Method: SendCustomCommand
Public Method: EnableCoinMechOrFeeder
Public Method: Replenish
Public Method: RefillMode
Public Method: AcceptFromEscrow
Public Method: ReturnFromEscrow
Public Method: KeyExchangelimit32bit
Public Method: GetAllLevels
Public Method: GetStoredValue
Public Method: GetHopperOptions
Public Method: SetHopperOptions
Public Method: LogRawPackets
Public Method: GetGlobalErrorCode
Public Method: (1) GetServiceInformation
Public Method: (2) GetServiceInformation
Public Method: SetServiceInformation
Public Method: SetServiceInformation_MaintenanceReset
Public Method: SetNoPayinCount
Public Method: (1) Purge
Public Method: (2) Purge
Public Method: (3) Purge
Public Method: GetCoinAcceptance(byte device)
Public Method: GetCounters()
Public Method: (1) CoinStir
Public Method: (2) CoinStir
Public Method: GetCoinsExit

Document Revision - v.1 ITL SDK Package Manual - 256

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Public Method: SetRealTimeClock
Public Method: GetRealTimeClock
Public Method: SetCashboxLevels
Public Method: ClearCashboxLevels
Public Method: GetCashboxLevels
Public Method: SetSorterRoute
Public Method: SetPayoutLimit
Public Method: GetPayoutCount
Public Method: SetTwinMode
Public Method: ExtendedGetDatasetVersion
Public Method: ExtendedGetFirmwareVersion
Public Method: comPortReadError
Public Method: DeviceState_StartupReady
Public Method: Get_Lifter_Status
Public Method: GetLastRejectCode
Public Method: Set_Denomination_Level
Public Method: DeviceError_LimpMode
Public Method: DeviceState_LimpMode
Public Method: GetBarcodeData
Public Method: SetBarcodeReaderConfiguration
Public Method: GetBarcodeReaderConfiguration
Public Method: SetBarcodeInhibit
Public Method: GetBarcodeInhibit
Public Method: DownloadFirmware

Document Revision - v.1 ITL SDK Package Manual - 257

•
•

•
•
•
•

•
•

•
•

•
•
•
•
•
•

•
•

•
•

•
•

Public Method: Open

Public
Method

Open

Method
Declaration

public CashSystemOpenResult Open(string comPort, byte sspAddress = 0,
DeviceModel devModel = DeviceModel.NOTE_VALIDATOR, UInt64 encKey =
0x0123456701234567, string logFilePath = null, bool logRawPackets =
false)

Description Attempts to establish connection to the ITL cash device.
On successful connection, attempts initial setup of the device which includes the
following:

Key exchange for command encryption
Sets initial channel inhibits
Gets information regarding the device model (stored in cashDevice.deviceModel)
If the device is an NV4000, gets information on the pay-out modules (stored in
cashDevice.modules)
Sets the initial routes
Gets the levels of cash currently stored in any connected pay-out modules (stored
in cashDevice.currencyAssignment)
Enables the device
Begins the device Poll loop that monitors replies from the device and raises any
relevant events

Parameters string comPort: Communication port name (e.g., “COM1)
byte sspAddress: SSP device address (default is 0)
DeviceModel devModel: Device model (default is NOTE_VALIDATOR)
UInt64 encKey: Encryption key (default is 0x0123456701234567)
string logFilePath: Path to the log file (default is null)
bool logRawPackets: Flag to log raw packets (default is false)

Returns CashSystemOpenResult.OK:
Successful connection

CashSystemOpenResult.ALREADY_OPEN:
Connection is already established

CashSystemOpenResult.PORT_ERROR:
Failed connection attempt

Document Revision - v.1 ITL SDK Package Manual - 258

•

•

•
•

Public Method: GetUnitInfo

Public
Method

GetUnitInfo

Method
Declaration

public bool GetUnitInfo()

Description Retrieves detailed information about the unit, including firmware version, dataset
version, device model, and serial numbers for various components. This function
performs several operations to gather and log this information.

Parameters None

Returns True if all info retrieved successfully
False if failed to retrieve some info

Document Revision - v.1 ITL SDK Package Manual - 259

•

•

•

Public Method: Connect

Public
Method

Connect

Method
Declaration

public void Connect()

Description Connects to an SSP cash device and runs through an initial state machine to connect to
the cash device, negotiate the encryption keys, get device information and set initial cash
routes. The thread will then terminate.

Parameters None

Returns N/A

•

•

You need to call the Open() method before using Connect().

After performing the Connect(), the application should then call the
startRunning() method to create a new ‘running’ thread which actually starts a
new state machine to run the device, i.e. run a setup sequence and then poll
the device for new events, etc.

Document Revision - v.1 ITL SDK Package Manual - 260

•

•

•

Public Method: startRunning

Public
Method

startRunning

Method
Declaration

public void startRunning()

Description Creates a new thread to ‘run’ with an SSP device. The thread is essentially a state
machine which runs through the some initial setup of the device and retrieving
information from it and then enters a normal ‘run’ routine, polling the device for any new
events.

Parameters None

Returns N/A

• The Open() and Connect() methods should be called prior to calling the
startRunning() method.

Document Revision - v.1 ITL SDK Package Manual - 261

•

•

•

Public Method: stopRunning

Public
Method

stopRunning

Method
Declaration

public void stopRunning()

Description Stops any running cash device threads, but does not close the COM port.

Parameters None

Returns N/A

Document Revision - v.1 ITL SDK Package Manual - 262

•

•

•

Public Method: Close

Public
Method

Close

Method
Declaration

public void Close()

Description Closes the currently open COM port, and terminates any threads that are ‘running’ to stop
any communications with the cash device.

Parameters None

Returns N/A

Document Revision - v.1 ITL SDK Package Manual - 263

•

•

•

Public Method: Disconnect

Public
Method

Disconnect

Method
Declaration

public void Disconnect()

Description Sets the device state to not connected and closes the communication port and threads.

Parameters None

Returns N/A

Document Revision - v.1 ITL SDK Package Manual - 264

•

•
•

•
•

Public Method: SetDenominationInhibitsSingleCurrency

Public
Method

SetDenominationInhibitsSingleCurrency

Method
Declaration

public bool SetDenominationInhibitsSingleCurrency(List<UInt32> values,
bool inhibit)

Description Sets the inhibit status for a list of denomination values in single currency mode.

Parameters List<UInt32> values : A list of denomination values to inhibit or uninhibit,
bool inhibit : Set true to inhibit the denominations, false to uninhibit.

Returns true - the operation is successful.
false - the device is in multi-currency mode or the value list is null.

Document Revision - v.1 ITL SDK Package Manual - 265

•

•

•
•
•

•

•
•

Public Method: SetDenominationInhibits

Public
Method

SetDenominationInhibits

Method
Declaration

public bool SetDenominationInhibits(List<ValueCountryCode>
valueCountryCodes, bool inhibit)

Description Sets the inhibit status for a list of denomination and country code pairs.

Parameters List<ValueCountryCode> valueCountryCodes: A list of ValueCountryCode objects
representing the denominations and their respective country codes.

ValueCountryCode is a class containing two variables:
UInt32 Value: Denomination value e.g 500, 1000 etc
string CountryCode: The country code of the currency e.g. “GBP”, “EUR”,
“USD” etc

bool inhibit: Set true to inhibit the denominations, false to uninhibit.

Returns true - the operation is successful.
false - the currency assignment or denominations list is null, or any denomination is
invalid.

Document Revision - v.1 ITL SDK Package Manual - 266

•

•
•

•
•

Public Method: SetDenominationInhibitSingleCurrency

Public
Method

SetDenominationInhibitSingleCurrency

Method
Declaration

public bool SetDenominationInhibitSingleCurrency(UInt32 value, bool
 inhibit)

Description Sets the inhibit status for a single denomination value in single currency mode.

Parameters UInt32 value: The denomination value to inhibit or uninhibit.
bool inhibit: Set true to inhibit the denominations, false to uninhibit.

Returns true - the operation is successful.
false - the device is in multi-currency mode.

Document Revision - v.1 ITL SDK Package Manual - 267

•

•
•

•
•

Public Method: (1) SetDenominationInhibit

Public
Method

SetDenominationInhibit

Method
Declaration

public bool SetDenominationInhibit(UInt32 index, bool inhibit)

Description Sets the inhibit status for a specific denomination based on its index.

Parameters UInt32 index: The index of the denomination to inhibit or uninhibit.
bool inhibit: Set true to inhibit the denominations, false to uninhibit.

Returns True - the operation is successful.
False - the operation fails.

Document Revision - v.1 ITL SDK Package Manual - 268

•

•

•
•

•

•
•

Public Method: (2) SetDenominationInhibit

Public
Method

SetDenominationInhibit

Method
Declaration

public bool SetDenominationInhibit(ValueCountryCode valueCountryCode,
bool inhibit)

Description Sets the inhibit status for a single denomination and country code pair.

Parameters ValueCountryCode valueCountryCode: is an object representing the denomination and its
respective country code:

UInt32 Value: Denomination value e.g 500, 1000 etc
string CountryCode: The country code of the currency e.g. “GBP”, “EUR”, “USD”
etc

bool inhibit: Set true to inhibit the denominations, false to uninhibit.

Returns true - the operation is successful.
false - the operation fails.

Document Revision - v.1 ITL SDK Package Manual - 269

•

•

•

Public Method: SetDenominationLevel

Public
Method

SetDenominationLevel

Method
Declaration

public bool SetDenominationLevel(UInt16 levelToSet = 0)

Description Sets the denomination level to the specified value.

Parameters UInt16 levelToSet: The level to set for the denomination. Default is 0.

Returns true - the operation is successful.

Document Revision - v.1 ITL SDK Package Manual - 270

•
•

•
•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

Public Method: DispenseValueSingleCurrency

Public
Method

DispenseValueSingleCurrency

Method
Declaration

public DispenseTransactionRequestResult
DispenseValueSingleCurrency(UInt32 value)

Description Dispenses the specified value.
Only applicable when the devices dataset contains only one currency as the currency
code does not need to be specified.

Parameters UInt32 value: The value of currency to be dispensed.
E.g. To dispense £10, $10, €10 etc, value = 1000
£5: value = 500, £25: value = 2500 etc.

Returns DispenseTransactionRequestResult.MULTI_CURRENCY_MODE:
Error: The device dataset contains more than 1 one currency.

DispenseTransactionRequestResult.NOT_SUPPORTED:
Error: the device does not support pay-out

DispenseTransactionRequestResult.BUSY:
Error: The device is busy and not able to pay-out

DispenseTransactionRequestResult.INVALID_INPUT:
Error: The parameters could not be correctly parsed

DispenseTransactionRequestResult.CANNOT_PAY_EXACT_AMOUNT:
Error: Exact param amount cannot be paid out

DispenseTransactionRequestResult.NOT_ENOUGH_VALUE:
Error: Stored amount is less than requested pay-out amount

DispenseTransactionRequestResult.OK:
Success: Pay-out can be completed

Document Revision - v.1 ITL SDK Package Manual - 271

•
•

•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

Public Method: DispenseValue

Public
Method

DispenseValue

Method
Declaration

public DispenseTransactionRequestResult DispenseValue(ValueCountryCode
valueCountryCode)

Description Dispenses a specified amount of the specified currency
Required if the devices dataset contains more than one currency

Parameters ValueCountryCode valueCountryCode: is an object representing the denomination and its
respective country code:

UInt32 Value: Denomination value to pay-out e.g 500, 1000 etc
string CountryCode: The country code of the currency that is to be paid out e.g.
“GBP”, “EUR”, “USD” etc

Returns DispenseTransactionRequestResult.NOT_SUPPORTED:
Error: the device does not support pay-out

DispenseTransactionRequestResult.BUSY:
Error: The device is busy and not able to pay-out

DispenseTransactionRequestResult.INVALID_INPUT:
Error: The parameters could not be correctly parsed

DispenseTransactionRequestResult.CANNOT_PAY_EXACT_AMOUNT:
Error: Exact param amount cannot be paid out

DispenseTransactionRequestResult.NOT_ENOUGH_VALUE:
Error: Stored amount is less than requested pay-out amount

DispenseTransactionRequestResult.OK:
Success: Pay-out can be completed

Document Revision - v.1 ITL SDK Package Manual - 272

•

•

•
•

•

•
•

•
•

•
•

Public Method: (1) PayoutByDenomination

Public
Method

DispenseValue

Method
Declaration

public DispenseTransactionRequestResult
PayoutByDenomination(ValueCountryCode denomination_to_payout, UInt32
numNotesToPayout)

Description Performs a payout transaction by the specified denomination and the number of notes to
payout.

Parameters ValueCountryCode denomination_to_payout: representing the denomination and its
respective country code:

UInt32 Value: Denomination value to pay-out e.g. 500, 1000 etc
string CountryCode: The country code of the currency that is to be paid out e.g.
“GBP”, “EUR”, “USD” etc

UInt32 numNotesToPayout: the number of notes to payout. If set to 0, all notes of the
specified denomination will be dispensed.

Returns DispenseTransactionRequestResult.BUSY:
Error: The device is busy and not able to pay-out

DispenseTransactionRequestResult.INVALID_INPUT:
Error: The parameters could not be correctly parsed

DispenseTransactionRequestResult.OK:
Success: Pay-out can be completed

Document Revision - v.1 ITL SDK Package Manual - 273

•

•

•
•

•
•

•
•

•
•

•
•

Public Method: (2) PayoutByDenomination

Public
Method

PayoutByDenomination

Method
Declaration

public DispenseTransactionRequestResult PayoutbyDenomination(UInt32[]
noteCounts)

Description Perform a payout transaction for multiple denominations.

Parameters UInt32[] noteCounts: an array of note counts to payout, where each index corresponds to
a specific denomination. E.g. if the currency assignment array of USD is {100, 500, 1000,
5000, 10000}, then to payout two $5 notes and one $10 note, the parameter noteCounts
would be [0, 2, 1, 0, 0, 0].

Returns DispenseTransactionRequestResult.NOT_SUPPORTED:
Error: the device does not support pay-out

DispenseTransactionRequestResult.BUSY:
Error: The device is busy and not able to pay-out

DispenseTransactionRequestResult.INVALID_INPUT:
Error: The parameters could not be correctly parsed

DispenseTransactionRequestResult.NOT_ENOUGH_VALUE:
Error: Stored amount is less than requested pay-out amount

DispenseTransactionRequestResult.OK:
Success: Pay-out can be completed

Document Revision - v.1 ITL SDK Package Manual - 274

•

•
•

•
•

•

•
•

•
•

•
•

•
•

•
•

Public Method: Float

Public
Method

Float

Method
Declaration

public DispenseTransactionRequestResult Float(UInt32[] noteCounts)

Description Moves the specified number of notes from the pay-out to the cashbox to maintain a
stored pay-out amount for the purpose of being able to collect excess notes whilst
leaving some for pay-out purposes

Parameters UInt32[] noteCounts:
An array of UInt32 of size equal to the number of channels in the dataset. Each
UInt32 is the number of notes to float, its index is the channel to float

E.g. For a GBP dataset containing £5, £10, £20 and £50
If noteCounts = [2, 3, 0, 5]

2 x £5, 3 x £10, 0 x £20 and 5 x £50 notes would be moved to the cashbox
from the pay-out

Returns DispenseTransactionRequestResult.NOT_SUPPORTED:
Error: the device does not support pay-out

DispenseTransactionRequestResult.BUSY:
Error: The device is busy and not able to pay-out

DispenseTransactionRequestResult.INVALID_INPUT:
Error: The parameters could not be correctly parsed

DispenseTransactionRequestResult.NOT_ENOUGH_VALUE:
Error: Stored amount is less than requested pay-out amount

DispenseTransactionRequestResult.OK:
Success: Pay-out can be completed

Document Revision - v.1 ITL SDK Package Manual - 275

•

•

•
•

•
•

•
•

•
•

•
•

Public Method: SetCashBoxPayoutLimit

Public
Method

SetCashBoxPayoutLimit

Method
Declaration

public DispenseTransactionRequestResult SetCashBoxPayoutLimit(uint[]
noteCounts)

Description Sets the cashbox payout limit by specifying the maximum number of notes for each
denomination.

Parameters uint[] noteCounts: An array of note counts representing the maximum number of notes
that can be paid out for each denomination. Each index corresponds to a specific
denomination in the currency assignment array.

E.g. For the dataset containing $5, $10, $20, $50, $100
To set the payout limit to 100 for $1, 50 for $5, and 10 for $20, the parameter
noteCounts would be [100, 50, 0, 10, 0, 0].

Returns DispenseTransactionRequestResult.NOT_SUPPORTED:
Error: the device does not support this operation for the given device model

DispenseTransactionRequestResult.BUSY:
Error: the device is busy and not able to process the request

DispenseTransactionRequestResult.INVALID_INPUT:
Error: the parameters could not be correctly parsed

DispenseTransactionRequestResult.OK:
Success: the cashbox payout limit was set successfully

Document Revision - v.1 ITL SDK Package Manual - 276

•

•

•

•
•

•
•

•
•

Public Method: SmartEmpty

Public
Method

SmartEmpty

Method
Declaration

public DispenseTransactionRequestResult SmartEmpty(byte moduleNumber,
bool NV4000 = false)

Description Initiates a smart empty operation on the specified module number of the dispenser.

Parameters byte moduleNumber: the module number to empty. If NV4000 is true and moduleNumber
is 0, all modules will be emptied.
bool NV4000: indicating whether the operation is for NV4000 model. Default is false.

Returns DispenseTransactionRequestResult.NOT_SUPPORTED:
Error: the device does not support this operation for the given device model

DispenseTransactionRequestResult.BUSY:
Error: the device is busy and not able to process the request

DispenseTransactionRequestResult.OK:
Success: the smart empty request was successful

Document Revision - v.1 ITL SDK Package Manual - 277

•

•
•

•
•
•

•
•
•
•

•
•

•
•

•
•

•
•

•
•

•
•

Public Method: SetDenominationRouteSingleCurrency

Public
Method

SetDenominationRouteSingleCurrency

Method
Declaration

public SetDenominationRouteRequestResult
SetDenominationRouteSingleCurrency(UInt32 value, DenominationRoute
route)

Description Set the routing for a single channel where the dataset only contains one currency.

Parameters UInt32 value:
The channel value to route E.g. 500, 1000, 2000 etc

DenominationRoute route:
DenominationRoute.CASHBOX: Routes to cashbox
DenominationRoute.RECYCLER: Routes to single recycler (Smart Pay-out) or an
available recycler (NV4000)
DenominationRoute.RECYCLER_1: Routes to the first (top) recycler, NV4000 only
DenominationRoute.RECYCLER_2: Routes to the second recycler, NV4000 only
DenominationRoute.RECYCLER_3: Routes to the third recycler, NV4000 only
DenominationRoute.RECYCLER_4: Routes to the fourth (bottom) recycler, NV4000
only

Returns SetDenominationRouteRequestResult.MULTI_CURRENCY_MODE:
The device dataset is not single currency (has 2 or more currencies)

SetDenominationRouteRequestResult.NOT_SUPPORTED:
The device does not support routing (it does not have a recycler)

SetDenominationRouteRequestResult.BUSY:
The device is busy and routing cannot occur

SetDenominationRouteRequestResult.INVALID_DEVICE_STATE:
The device is not in the correct state for routing

SetDenominationRouteRequestResult.INVALID_INPUT:
CashDevice objects have not been initialised, or one or more parameters are null,
or value specified does not exist on the devices dataset

SetDenominationRouteRequestResult.OK:
Routed successfully

Document Revision - v.1 ITL SDK Package Manual - 278

•

•

•
•

•
•
•

•
•
•
•

•
•

•
•

•
•

•
•

Public Method: (1) SetDenominationRoute

Public
Method

SetDenominationRoute

Method
Declaration

public SetDenominationRouteRequestResult
SetDenominationRoute(ValueCountryCode valueCountryCode,
DenominationRoute route)

Description Configure the specified denomination to be either routed to cashbox or stored to be
made available for later possible payout

Parameters ValueCountryCode valueCountryCode: is an object representing the denomination and its
respective country code:

UInt32 Value: Denomination value e.g 500, 1000 etc
string CountryCode: The country code of the currency e.g. “GBP”, “EUR”, “USD”
etc

DenominationRoute route:
DenominationRoute.CASHBOX: Routes to cashbox
DenominationRoute.RECYCLER: Routes to single recycler (Smart Pay-out) or an
available recycler (NV4000)
DenominationRoute.RECYCLER_1: Routes to the first (top) recycler, NV4000 only
DenominationRoute.RECYCLER_2: Routes to the second recycler, NV4000 only
DenominationRoute.RECYCLER_3: Routes to the third recycler, NV4000 only
DenominationRoute.RECYCLER_4: Routes to the fourth (bottom) recycler, NV4000
only

Returns SetDenominationRouteRequestResult.NOT_SUPPORTED:
The device does not support routing (it does not have a recycler)

SetDenominationRouteRequestResult.BUSY:
The device is busy and routing cannot occur

SetDenominationRouteRequestResult.INVALID_INPUT:
CashDevice objects have not been initialised, or one or more parameters are null,
or value specified does not exist on the devices dataset

SetDenominationRouteRequestResult.OK:
Routed successfully

Document Revision - v.1 ITL SDK Package Manual - 279

•

•
•

•
•

•
•
•
•

•
•

•
•

•
•

•
•

•
•

Public Method: (2) SetDenominationRoute

Public
Method

SetDenominationRoute

Method
Declaration

public SetDenominationRouteRequestResult SetDenominationRoute(Int32
index, DenominationRoute route)

Description Set the routing of a denomination based on its index in the dataset.

Parameters Int32 index: the index of the denomination in the currency assignment array
DenominationRoute route:

DenominationRoute.CASHBOX: Routes to cashbox
DenominationRoute.RECYCLER: Routes to single recycler (Smart Pay-out) or an
available recycler (NV4000)
DenominationRoute.RECYCLER_1: Routes to the first (top) recycler, NV4000 only
DenominationRoute.RECYCLER_2: Routes to the second recycler, NV4000 only
DenominationRoute.RECYCLER_3: Routes to the third recycler, NV4000 only
DenominationRoute.RECYCLER_4: Routes to the fourth (bottom) recycler, NV4000
only

Returns SetDenominationRouteRequestResult.NOT_SUPPORTED:
The device does not support routing (it does not have a recycler)

SetDenominationRouteRequestResult.BUSY:
The device is busy and routing cannot occur

SetDenominationRouteRequestResult.INVALID_DEVICE_STATE:
The device is not in the correct state for routing

SetDenominationRouteRequestResult.INVALID_INPUT:
CashDevice objects have not been initialised, or one or more parameters are null,
or value specified does not exist on the devices dataset

SetDenominationRouteRequestResult.OK:
Routed successfully

Document Revision - v.1 ITL SDK Package Manual - 280

•

•

•

Public Method: EnableAcceptor

Public
Method

EnableAcceptor

Method
Declaration

public void EnableAcceptor()

Description Enables the cash device to accept currency, does not enable any connected pay-out
modules.

Parameters None

Returns N/A

Document Revision - v.1 ITL SDK Package Manual - 281

•

•

•

Public Method: DisableAcceptor

Public
Method

DisableAcceptor

Method
Declaration

public void DisableAcceptor()

Description Disables the acceptor to stop accepting currency, any connected and enabled pay-out
modules will stay enabled and still pay-out cash

Parameters None

Returns N/A

Document Revision - v.1 ITL SDK Package Manual - 282

•

•

•
•

Public Method: EnablePayout

Public
Method

EnablePayout

Method
Declaration

public bool EnablePayout()

Description Enables a connected pay-out module for storing and payout cash.

Parameters None

Returns True if successfully enabled
False if enable fails

Document Revision - v.1 ITL SDK Package Manual - 283

•

•

•
•

Public Method: DisablePayout

Public
Method

DisablePayout

Method
Declaration

public bool EnablePayout()

Description Disables a connected pay-out module.

Parameters None

Returns True if successfully disabled
False if disable fails

Document Revision - v.1 ITL SDK Package Manual - 284

•

•

•
•

Public Method: HaltPayout

Public
Method

HaltPayout

Method
Declaration

public bool HaltPayout()

Description Halts the payout operation of the device.

Parameters None

Returns True if successfully halted
False if halting payout fails

Document Revision - v.1 ITL SDK Package Manual - 285

•

•

•
•

Public Method: ResetDevice

Public
Method

ResetDevice

Method
Declaration

public bool ResetDevice()

Description Resets the device to its initial state.

Parameters None

Returns True if the operation is successful
False if resetting the device fails

Document Revision - v.1 ITL SDK Package Manual - 286

•

•

•

•
•

Public Method: SendCustomCommand

Public
Method

SendCustomCommand

Method
Declaration

public bool SendCustomCommand(byte[] customCommandData, byte
 customCommandDataLength)

Description Sends a custom command to the device, constructed as an array of bytes

Parameters byte[] customCommandData: An array of bytes representing the custom command data
to be sent to the device.
byte customCommandDataLength: The length of the command data e.g. the length of 52
EC 03 is 3.

Returns True: Custom command sent successfully
False: Failed to send custom command

Document Revision - v.1 ITL SDK Package Manual - 287

•

•

•
•

Public Method: EnableCoinMechOrFeeder

Public
Method

EnableCoinMechOrFeeder

Method
Declaration

public bool EnableCoinMechOrFeeder()

Description Enables the coin mechanism or feeder for specific device models

Parameters None

Returns True if successfully enabled
False if enable fails

Document Revision - v.1 ITL SDK Package Manual - 288

•

•

•
•

•
•

Public Method: Replenish

Public
Method

Replenish

Method
Declaration

public DispenseTransactionRequestResult Replenish(uint
 NumberToReplinish)

Description Replenishes the specified number of notes from the replenishment cassette to the
recyclers. Can only be used with the NV4000 device model.

Parameters uint NumberToReplenish: The number of notes to replenish from the RC to the pay-out
modules e.g. to replenish 5 notes to recyclers, set NumberToReplenish to 5.

Returns DispenseTransactionRequestResult.NOT_SUPPORTED:
The device does not support this operation (only NV4000 is supported)

DispenseTransactionRequestResult.OK:
Notes replenished successfully

Document Revision - v.1 ITL SDK Package Manual - 289

•

•

•

Public Method: RefillMode

Public
Method

RefillMode

Method
Declaration

public void RefillMode(bool enable)

Description Enables or disables the refill mode of the device

Parameters bool enable: Indicates whether to enable or disable refill mode

Returns N/A

Document Revision - v.1 ITL SDK Package Manual - 290

•

•

•
•

Public Method: AcceptFromEscrow

Public
Method

AcceptFromEscrow

Method
Declaration

public bool AcceptFromEscrow()

Description Accepts a note currently being held in escrow.

Parameters None

Returns True if note waiting and is accepted.
False if there is no note to accept.

Document Revision - v.1 ITL SDK Package Manual - 291

•

•

•
•

Public Method: ReturnFromEscrow

Public
Method

ReturnFromEscrow

Method
Declaration

public bool ReturnFromEscrow()

Description Returns a note currently being held in escrow

Parameters None

Returns True if note waiting and is returned.
False if there is no note to return.

Document Revision - v.1 ITL SDK Package Manual - 292

•

•

•

Public Method: KeyExchangelimit32bit

Public
Method

KeyExchangelimit32bit

Method
Declaration

public bool KeyExchangelimit32bit()

Description Performs a key exchange with a 32-bit limit and enables encryption if successful

Parameters None

Returns True if the key exchange is performed and encrypted is enabled

Document Revision - v.1 ITL SDK Package Manual - 293

•

•

•

•

•
•

Public Method: GetAllLevels

Public
Method

GetAllLevels

Method
Declaration

public bool GetAllLevels()

Description Retrieves the current levels of all denominations from the device and updates the internal
state with this information.
For each level entry, it calculates the index using the denomination value and currency
code.
If the index is valid, it updates the stored level for that denomination.

Parameters None

Returns True if all levels are successfully retrieved and updated.
False if any index is invalid or an error occurs

Document Revision - v.1 ITL SDK Package Manual - 294

•

•

•

Public Method: GetStoredValue

Public
Method

GetStoredValue

Method
Declaration

public UInt32 GetStoredValue(string countryCode)

Description Calculates the total stored value of a specified currency based on the provided country
code that is stored in the cashbox

Parameters string countryCode: The country code of the currency for which the stored value is to be
calculated.

Returns A UInt32 representing the total stored value of the specified currency.

Document Revision - v.1 ITL SDK Package Manual - 295

•

•

•

•

Public Method: GetHopperOptions

Public
Method

GetHopperOptions

Method
Declaration

public bool GetHopperOptions()

Description Retrieves the current hopper options from the device and updates internal registers with
this information.

Parameters None

Returns True if successfully updated the internal registers reg_0 and reg_1 with the response
data.
False if the command fails, the response is not OK, or the response length is less than 3

Document Revision - v.1 ITL SDK Package Manual - 296

•

•
•

•
•

Public Method: SetHopperOptions

Public
Method

SetHopperOptions

Method
Declaration

public bool SetHopperOptions(byte reg_0, byte reg_1)

Description Sets the hopper options on the device using the provided register values.

Parameters byte reg_0: The value to set for the first hopper register.
byte reg_1: The value to set for the second hopper register.

Returns True if the operation is successful and the hopper options are set
False if the command to set the hopper options fails or the response is not OK

Document Revision - v.1 ITL SDK Package Manual - 297

•

•

•

Public Method: LogRawPackets

Public
Method

LogRawPackets

Method
Declaration

public void logRawPackets(bool rawPacketsOptionSelected = true)

Description Takes rawPacketsOptionSelected by default as true and flags the SSP to log the raw
packet data.

Parameters bool rawPacketsOptionSelected

Returns N/A

Document Revision - v.1 ITL SDK Package Manual - 298

•

•

•
•

Public Method: GetGlobalErrorCode

Public
Method

GetGlobalErrorCode

Method
Declaration

public bool GetGlobalErrorCode()

Description Sets the globalErrorCode_0 and globalErrorCode_1 to the error code in the cash device

Parameters None

Returns True if the call was successful
False if the call was unsuccessful

Document Revision - v.1 ITL SDK Package Manual - 299

•

•

•

•

•

•

•

•

•
•

Public Method: (1) GetServiceInformation

Public
Method

GetServiceInformation

Method
Declaration

public bool GetServiceInformation(byte subCommand)

Description Retrieves service information from the device based on the provided sub-command and
formats the information into a readable string.
The extracted information is formatted into a readable string and stored in the variable
service_information_string

Parameters byte subCommand: The sub-command to specify the type of service information to
retrieve. Possible values:

Byte: 0x00 - Service Type: Date Information - Description: Returns the current raw
byte date
Byte: 0x01 - Service Type: Note Information - Description: Extracts the number of
notes since various events such as maintenance reset, last download, power on,
and last jam.
Byte: 0x02 - Service Type: Accept Note Information - Description: Extracts the
number of accepted notes since maintenance reset, last download, and power on.
Byte: 0x03 - Service Type: Jam Information - Description: Extracts the number of
jams since maintenance reset, last download, and in the last 1000 notes.
Byte: 0x04 - Service Type: Service Flags - Description: Returns current service flag
status

Returns True if the operation is successful and the service information is retrieved and formatted
False if the command to retrieve the service information fails or the response is not OK

Document Revision - v.1 ITL SDK Package Manual - 300

•

•

•

•
•

•

•

•

•

•

•
•

•
•

Public Method: (2) GetServiceInformation

Public
Method

GetServiceInformation

Method
Declaration

public bool GetServiceInformation(byte module, byte subCommand)

Description Retrieves service information from the device based on the provided module and sub-
command, and formats the information into a readable string.
The extracted information is formatted into a readable string and stored in the variable
service_information_string

Parameters byte module: The module identifier specifying the type of module to retrieve information
from.

0x05: NV4000 Lifetime Counts.
0x00, 0x01, 0x02, 0x03: Smart Coin System modules including Primary Hopper,
Feeder, Secondary Hopper, and Lifter.

byte subCommand: The sub-command to specify the type of service information to
retrieve. Possible values:

Byte: 0x00 - Service Type: Service Status - Description: Returns the service status
of the device
Byte: 0x01 - Service Type: Next Service Due - Description: Returns the next service
due. Should be sent for each module
Byte: 0x02 - Service Type: Last Service Information - Description: Returns the last 3
services, 3 bytes per service, 9 bytes in total
Byte: 0x03 - Service Type: Performance Since Last Service - Description: Extracts
the number of coins processed, acceptance percentage, jams, and calibration
failures since the last service
Byte: 0x04 - Service Type: Service Flags - Description: Returns current service flags
Byte: 0x05 - Service Type: Lifetime Counts - Description: Get the lifetime counts of
the module

Returns True if the operation is successful and the service information is retrieved and formatted
False if the command to retrieve the service information fails or the response is not OK

Document Revision - v.1 ITL SDK Package Manual - 301

•

•

•
•
•

•
•

Public Method: SetServiceInformation

Public
Method

SetServiceInformation

Method
Declaration

public bool SetServiceInformation(byte module, byte serviceType, byte
 month, byte year)

Description Sets the service information for the device using the provided module, service type,
month, and year.

Parameters byte module: The module identifier specifying the type of module to set the service
information for.
byte servicetype: The type of service being set.
byte month: The month of the service date.
byte year: The year of the service date.

Returns True if the operation is successful and the service information is set.
False if the command to set the service information fails or the response is not OK.

Document Revision - v.1 ITL SDK Package Manual - 302

•

•

•
•
•

•
•

Public Method: SetServiceInformation_MaintenanceReset

Public
Method

SetServiceInformation_MaintenanceReset

Method
Declaration

public bool SetServiceInformation_MaintenanceReset(byte
 weekNumber1_ascii_byte, byte weekNumber2_ascii_byte, byte
 yearNumber1_ascii_byte, byte yearNumber2_ascii_byte)

Description Sets the maintenance reset information for the device using the provided ASCII bytes
representing the week and year of the maintenance reset.

Parameters byte weekNumber1_ascii_byte: The module identifier specifying the type of module to
set the service information for.
byte weekNumber2_ascii_byte: The type of service being set.
byte yearNumber1_ascii_byte: The month of the service date.
byte yearNumber2_ascii_byte: The year of the service date.

Returns True if the operation is successful and the service information is set.
False if the command to set the service information fails or the response is not OK.

Document Revision - v.1 ITL SDK Package Manual - 303

•

•

•
•

Public Method: SetNoPayinCount

Public
Method

SetNoPayinCount

Method
Declaration

public bool SetNoPayinCount(byte count)

Description Sets the no-payin count for the device, which specifies the number of transactions
allowed without pay-ins.

Parameters byte count: The number of transactions allowed without pay-ins.

Returns True if the operation is successful and the no-payin count is set
False if the command to set the no-payin count fails or the response is not OK.

Document Revision - v.1 ITL SDK Package Manual - 304

•

•

•

Public Method: (1) Purge

Public
Method

Purge

Method
Declaration

public bool Purge()

Description Attempts to clear a coin that is stuck in a place that causes a calibration fault at start-up,
typically behind the payout flap on the hopper

Parameters None

Returns N/A

Document Revision - v.1 ITL SDK Package Manual - 305

•

•
•
•

•
•

Public Method: (2) Purge

Public
Method

Purge

Method
Declaration

public bool Purge(byte device)

Description Attempts to clear a coin that is stuck in a place that causes a calibration fault at startup,
typically behind the payout flap on the hopper

Parameters byte device: The byte representing the specific device component to purge.
0x00 for Hopper
0x01 for Feeder

Returns True if the purge operation is successfully initiated.
False if the command to initiate the purge fails or the response is not OK (0xF0).

Document Revision - v.1 ITL SDK Package Manual - 306

•

•
•
•

•

•
•

Public Method: (3) Purge

Public
Method

Purge

Method
Declaration

public bool Purge(byte device, byte hopper)

Description Attempts to clear a coin that is stuck in a place that causes a calibration fault at startup,
typically behind the payout flap on the hopper

Parameters byte device: The byte representing the specific device component to purge.
0x00 for Hopper
0x01 for Feeder

byte hopper: The byte representing whether the purge is for the master hopper (0x00) or
slave hopper (0x01).

Returns True if the purge operation is successfully initiated.
False if the command to initiate the purge fails or the response is not OK (0xF0).

Document Revision - v.1 ITL SDK Package Manual - 307

•

•

•
•

Public Method: GetCoinAcceptance(byte device)

Public
Method

GetCoinAcceptance(byte device)

Method
Declaration

public bool GetCoinAcceptance(byte device)

Description Retrieves the coin acceptance status from the specified device and formats the data into
a readable string

Parameters byte device: The byte representing the specific device component from which to retrieve
the coin acceptance status

Returns True if it builds a string representation of the coin acceptance status
False if the command fails or the response is not OK (0xF0)

Document Revision - v.1 ITL SDK Package Manual - 308

•

•

•

•

•
•

Public Method: GetCounters()

Public
Method

GetCounters()

Method
Declaration

public bool GetCounters()

Description Retrieves the counter information from the device and formats the data into a readable
string:

SMART_COIN_SYSTEM, TWIN_SMART_COIN_SYSTEM, SMART_HOPPER_4:
Retrieves and formats the number of counters, coins paid out, coins paid in,
feeder rejects, hopper jams, feeder jams, fraud attempts, calibration fails, resets,
and coins sent to cashbox.
NV4000, SPECTRAL_DEVICE: Retrieves and formats the number of counters,
stacked, stored, dispensed, transferred to stack, and rejected counts.

Parameters None

Returns True if the operation is successful and the counters are retrieved and formatted
False if the command to retrieve the counters fails or the response is not OK (0xF0)

Document Revision - v.1 ITL SDK Package Manual - 309

•

•

•
•

Public Method: (1) CoinStir

Public
Method

CoinStir

Method
Declaration

public bool CoinStir(byte seconds)

Description Initiates a coin stirring operation for the specified duration in seconds

Parameters byte seconds: The duration for which to stir the coins, specified in seconds (1-255)

Returns True if the coin stir operation is successfully initiated
False if the command to initiate the coin stir fails or the response is not OK (0xF0)

Document Revision - v.1 ITL SDK Package Manual - 310

•

•
•

•
•

Public Method: (2) CoinStir

Public
Method

CoinStir

Method
Declaration

public bool CoinStir(byte seconds, byte modeByte)

Description Initiates a coin stirring operation for the specified duration in seconds, with an additional
mode parameter.

Parameters byte seconds: The duration for which to stir the coins, specified in seconds (1-255)
byte modeByte: An optional mode byte to specify additional behaviour e.g. move coins to
cashbox if set

Returns True if the coin stir operation is successfully initiated
False if the command to initiate the coin stir fails or the response is not OK (0xF0)

Document Revision - v.1 ITL SDK Package Manual - 311

•

•

•

•

Public Method: GetCoinsExit

Public
Method

GetCoinsExit

Method
Declaration

public bool GetCoinsExit()

Description Retrieves the number of coins in the payout request and the number of coins seen at the
exit sensor, to validate no over-payment of coins.

Parameters None

Returns True if the operation is successful and the coin exit data is retrieved and processed. The
extracted values are stored in coins_payout_request and coins_seen_at_exit_sensor
False if the command to retrieve the coin exit data fails or the response is not OK (0xF0)

Document Revision - v.1 ITL SDK Package Manual - 312

•

•
•
•
•
•
•

•
•

Public Method: SetRealTimeClock

Public
Method

SetRealTimeClock

Method
Declaration

public bool SetRealTimeClock(byte byte1, byte byte2, byte byte3, byte
 byte4, byte byte5, byte byte6)

Description Sets the real-time clock on the device using the provided date and time bytes

Parameters byte byte1: Day of the month (1-31)
byte byte2: Month of the year (1-12)
byte byte3: Year (0-99)
byte byte4: Hour of the day (0-23)
byte byte5: Minute of the hour (0-59)
byte byte6: Second of the minute (0-59)

Returns True if the real-time clock was set successfully
False if the command fails or the response is not OK

Document Revision - v.1 ITL SDK Package Manual - 313

•

•

•

•

Public Method: GetRealTimeClock

Public
Method

GetRealTimeClock

Method
Declaration

public bool GetRealTimeClock()

Description Retrieves the real-time clock from the SSP device and formats it into a human-readable
string

Parameters None

Returns True if the real-time clock was successfully retrieved. The extracted data is stored in
real_time_clock_string
False if the command fails or the response is not OK

Document Revision - v.1 ITL SDK Package Manual - 314

•

•
•
•

•
•

Public Method: SetCashboxLevels

Public
Method

SetCashboxLevels

Method
Declaration

public bool SetCashboxLevels(ushort numCoinsToAdd, uint denomination,
string countryCode)

Description Sets the coin levels of the cashbox

Parameters ushort numCoinsToAdd: Number of coins to add to level (0 will clear the level)
uint denomination: Value of denomination to set
string countryCode: ASCII country code of denomination

Returns True if successfully set cashbox levels
False if the command fails or the response is not OK (not 0xF0)

Document Revision - v.1 ITL SDK Package Manual - 315

•

•

•
•

Public Method: ClearCashboxLevels

Public
Method

ClearCashboxLevels

Method
Declaration

public bool ClearCashboxLevels()

Description Clears the cashbox levels on the SSP device.

Parameters None

Returns True if the cashbox levels are successfully cleared and acknowledged by the device.
False if the command fails or the response is not OK (not 0xF0)

Document Revision - v.1 ITL SDK Package Manual - 316

•
•

•

•
•

Public Method: GetCashboxLevels

Public
Method

GetCashboxLevels

Method
Declaration

public bool GetCashboxLevels()

Description Retrieves the coins that have been flushed down to the cashbox.
Reports in the same format as GetAllLevels()

Parameters None

Returns True if successfully set the mode of the Twin SCS.
False if failed to retrieve cashbox levels

Document Revision - v.1 ITL SDK Package Manual - 317

•

•

•
•

•

•
•

•
•

•
•

•
•

Public Method: SetSorterRoute

Public
Method

SetSorterRoute

Method
Declaration

public SetSorterRouteRequestResult SetSorterRoute(ValueCountryCode
valueCountryCode, byte sorterRoute)

Description Sets the route for the specified denomination to go to either PRIMARY or SECONDARY
hopper of the Twin SMART Coin System

Parameters ValueCountryCode valueCountryCode: is an object representing the denomination and its
respective country code:

UInt32 Value: Denomination value e.g 500, 1000 etc
string CountryCode: The country code of the currency e.g. “GBP”, “EUR”, “USD”
etc

byte sorterRoute: The sorter route to set for the specified denomination. Use 0x00 for
PRIMARY hopper and 0x01 for SECONDARY hopper.

Returns SetSorterRouteRequestResult.OK:
The sorter route is set successfully

SetSorterRouteRequestResult.FAILED:
Failed to set sorter route

SetSorterRouteRequestResult.INVALID_INPUT:
Error: The input is invalid e.g. invalid denomination or invalid route

SetSorterRouteRequestResult.NOT_SUPPORTED:
The device does not support this operation for the given device model

Document Revision - v.1 ITL SDK Package Manual - 318

•
•

•

•
•

Public Method: SetPayoutLimit

Public
Method

SetPayoutLimit

Method
Declaration

public bool SetPayoutLimit(ushort value)

Description Limits the number of coins that can be dispensed in one transaction
Should be sent during the setup of the device

Parameters ushort value: The maximum number of coins that can be dispensed in one transaction

Returns True if the payout limit is successfully set.
False if failed to set payout limit command

Document Revision - v.1 ITL SDK Package Manual - 319

•

•

•
•

Public Method: GetPayoutCount

Public
Method

GetPayoutCount

Method
Declaration

public bool GetPayoutCount()

Description Gets the number of coins the hopper wants to pay out after it calculates the coin split on
a test payout.

Parameters None

Returns True if successfully retrieved payout count which is stored in variable payout_count
False if failed to get payout count

Document Revision - v.1 ITL SDK Package Manual - 320

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•
•
•

Public Method: SetTwinMode

Public
Method

SetTwinMode

Method
Declaration

public bool SetTwinMode(byte twinMode)

Description A command to select the operation mode of the Twin SCS

Parameters byte twinMode: The operation mode. Currently there are 4 modes available:
0x00: Normal Smart Coin System: The master SCS works alone as a normal SCS.
There is no need to connect the secondary hopper as it is unused in this mode.
0x01: Twin Smart Coin System: The unit works as a complete Twin Smart Coin
System. The secondary hopper needs to be connected to the main hopper.
0x02 Twin Single Smart Coin System: The Twin Feeder is able to pay in coins to
both routes (main hopper or lateral) based on host selection, but there is no
control over the secondary hopper. That means in this mode only the main
hopper is in control for the payouts. The slave hopper, if connected, should be
controlled by the host individually. For this mode the following commands/events
can be used by the host

Get coin amount to lateral route: To account for the coins sent to the
lateral path.
Set coin amount to lateral route: To set/reset the coins amount to the
lateral path.
When working with individual coin events during pay-in (event coin credit
0x0D in CC2), every coin paid-in reports the value and the country code as
usual, but also an extra byte with the route (main hopper or lateral). In this
way the coins sent to lateral can be accounted in this Single Twin mode
during a pay-in.

0x03 Twin 1ec Balanced mode: This mode is the same as the Twin mode 0x01, but it
handles the EUR 1ec in a way that the quantities are balanced in both hoppers. This mode
improves the quantity of 1ec coins that the system can handle in the hoppers. Please
note:

During payins, the 1ec coins will be routed to the hopper with less quantity of
coins.
During payouts, the 1ec coins will be taken from the hopper with more 1ec coins
(or from both if necessary).
If the set coin amount command is sent, the levels will be updated in the slave
hopper only (as for operation it might be easer to manipulate the levels). If a level
0 is sent both hoppers levels will be cleared of 1ec.

Returns True if successfully set mode for the Twin SCS
False if the command fails or the response is not OK. Possible errors can be:

The command is sent during a pay-in or a pay-out
The mode sent is different to the available ones (0x00), (0x01), (0x02), (0x03)
The requested mode is already in use
The Feeder is not attached

Document Revision - v.1 ITL SDK Package Manual - 321

•

•

•

•

Public Method: ExtendedGetDatasetVersion

Public
Method

ExtendedGetDatasetVersion

Method
Declaration

public bool ExtendedGetDatasetVersion()

Description Command to return a variable length ASCII array containing the installed dataset version
of the attached device that appends compilation date/time

Parameters None

Returns True if successfully retrieved the extended dataset which is stored in the variable
extendedDataset
False if failed to get extended dataset version

Document Revision - v.1 ITL SDK Package Manual - 322

•

•

•

•

Public Method: ExtendedGetFirmwareVersion

Public
Method

ExtendedGetFirmwareVersion

Method
Declaration

public bool ExtendedGetFirmwareVersion()

Description Command to return a variable length ASCII array containing the full firmware version of
the attached device that appends compilation date/time

Parameters None

Returns True if successfully retrieved the extended firmware which is stored in the variable
extendedFirmware
False if failed to get extended firmware version

Document Revision - v.1 ITL SDK Package Manual - 323

•

•

•

Public Method: comPortReadError

Public
Method

comPortReadError

Method
Declaration

public bool comPortReadError()

Description Checks if there is any read error on the COM port

Parameters None

Returns True if there is a read error, otherwise, False

Document Revision - v.1 ITL SDK Package Manual - 324

•

•

•

Public Method: DeviceState_StartupReady

Public
Method

DeviceState_StartupReady

Method
Declaration

public bool DeviceState_StartupReady(DeviceState deviceStateToCheck)

Description Checks if the device state indicates that the device is ready for startup

Parameters DeviceState deviceStateToCheck: The device state to check

Returns True if the device state is ready for startup, otherwise, False

Document Revision - v.1 ITL SDK Package Manual - 325

•

•

•

•

Public Method: Get_Lifter_Status

Public
Method

Get_Lifter_Status

Method
Declaration

public bool Get_Lifter_Status()

Description Allows to get the current status of the lifter

Parameters None

Returns True if successfully retrieved lifter status. The extracted data about lifter is stored in
variables lifterConnected, lifterOptoClear and lifterJammed.
False if failed to get lifter status

Document Revision - v.1 ITL SDK Package Manual - 326

•

•

•

•

Public Method: GetLastRejectCode

Public
Method

GetLastRejectCode

Method
Declaration

public bool GetLastRejectCode()

Description Gets the reason the device rejected the last note

Parameters None

Returns True if successfully retrieved the reject code. The code is converted to a human-readable
string stored in the variable rejectCategory
False if failed to get the last reject code

Document Revision - v.1 ITL SDK Package Manual - 327

•

•

•
•

•

•
•

Public Method: Set_Denomination_Level

Public
Method

Set_Denomination_Level

Method
Declaration

public bool Set_Denomination_Level(ValueCountryCode
setLevelsDenomination, uint numCoinsToAdd)

Description A command to increment the level of coins of the specified denomination stored in the
hopper.

Parameters ValueCountryCode valueCountryCode: is an object representing the denomination and its
respective country code:

UInt32 Value: Value of denomination to set e.g 500, 1000 etc
string CountryCode: ASCII country code of denomination e.g. “GBP”, “EUR”, “USD”
etc

uint numCoinsToAdd: the amount of coins to add to level (0 will clear the level)

Returns True if successfully set denomination level
False if the command failed or the response is not OK (not 0xF0)

Document Revision - v.1 ITL SDK Package Manual - 328

•

•

•

Public Method: DeviceError_LimpMode

Public
Method

DeviceError_LimpMode

Method
Declaration

public bool DeviceError_LimpMode(DeviceError deviceErrorToCheck)

Description Checks if the device error indicates that the device is in limp mode

Parameters DeviceError deviceErrorToCheck: The device error to check

Returns True if the device error indicates limp mode, otherwise, False.

Document Revision - v.1 ITL SDK Package Manual - 329

•

•

•

Public Method: DeviceState_LimpMode

Public
Method

DeviceState_LimpMode

Method
Declaration

public bool DeviceState_LimpMode(DeviceState deviceStateToCheck)

Description Checks if the device state indicates that the device is in limp mode

Parameters DeviceState deviceStateToCheck: The device state to check

Returns True if the device state indicates limp mode, otherwise, False.

Document Revision - v.1 ITL SDK Package Manual - 330

•

•

•

•

Public Method: GetBarcodeData

Public
Method

GetBarcodeData

Method
Declaration

public bool GetBarcodeData()

Description Obtains the last valid barcode ticket data, sends in response to a barcode ticket validated
event

Parameters None

Returns True if successfully retrieved the barcode data. The ticket status is then updated and
stored in the variable ticketStatus and the ASCII array representing barcode data is stored
in the variable barcode_ascii_data
False if failed to get barcode data

Document Revision - v.1 ITL SDK Package Manual - 331

•

•
•
•
•
•

•
•
•

•
•

•

Public Method: SetBarcodeReaderConfiguration

Public
Method

SetBarcodeReaderConfiguration

Method
Declaration

public bool SetBarcodeReaderConfiguration(byte enableReaders, byte
 barCodeFormat, byte numberOfCharacters)

Description Allows the host to set-up the barcode reader(s) configuration on the device

Parameters byte enableReaders: Enable Readers
0x00 = Enable none
0x01 = Enable top
0x02 = Enable bottom
0x03 = Enable both

byte barCodeFormat: Bar code format
0x00 = None
0x01 = Interleaved 2 of 5

byte numberOfCharacters: Number of characters
Min 6 – Max 24

Returns True if successfully set barcode reader configuration, otherwise, False.

Document Revision - v.1 ITL SDK Package Manual - 332

•

•

•

•
•
•
•

•
•
•
•

•
•

•

•

Public Method: GetBarcodeReaderConfiguration

Public
Method

GetBarcodeReaderConfiguration

Method
Declaration

public bool GetBarcodeReaderConfiguration()

Description Returns the set-up data for the device bar code readers

Parameters None

Returns True if successfully retrieved barcode reader configuration. The following public
properties are updated:

Variable Description Possible Value

barCodeHardwareStatus Bar code hardware status None
Top reader fitted
Bottom reader fitted
Both fitted

readerEnabled Readers enabled None
Top
Bottom
Both

barcodeFormat Bar code format None
Interleaved 2 of 5

numberOfCharacters Number of characters Min 6 max 24

False if failed to get barcode readers

Document Revision - v.1 ITL SDK Package Manual - 333

•

•

•
•
•
•

•

Public Method: SetBarcodeInhibit

Public Method SetBarcodeInhibit

Method Declaration

public bool SetBarcodeInhibit(byte inhibitByte)

Description Used to set up the bar code inhibit status register.

Parameters byte inhibitByte: A byte indication to enable or disable barcode/
currency inhibit:

0xFF = Both Currency and Barcode Disabled
0xFE = Barcode Disabled and Currency Enabled (Default)
0xFD = Barcode Enabled and Currency Disabled
0xFC = Both Currency and Barcode Enabled

Returns True if successfully set barcode inhibit, otherwise, False

Document Revision - v.1 ITL SDK Package Manual - 334

•

•

•

•

Public Method: GetBarcodeInhibit

Public Method GetBarcodeInhibit

Method Declaration

public bool GetBarcodeInhibit()

Description Returns the current barcode/currency inhibit status.

Parameters None

Returns True if successfully retrieved the barcode inhibit. It then updates
the barCodeInhibit variable with a description of the inhibit status.
False if failed to get barcode inhibit status.

Document Revision - v.1 ITL SDK Package Manual - 335

•

•
•

•
•
•

•
•

•
•
•

•
•
•

•
•
•

•

Public Method: DownloadFirmware

Public Method DownloadFirmware

Method Declaration

public bool DownloadFirmware(string comPort, byte
 sspAddress, string downloadFile, bool
 enablePacketDownload = true, int baudRate = 115200,
UInt64 encKey = 0x0123456701234567)

Description Begins the download of the specified firmware files to the ITL
device

Parameters string comPort:
The port of the connected device. E.g. “COM2”

byte sspAddress: Device address,
0 for note validators
16 for Coin recycler, SMART coin system

string downloadFile:
The path of the download file on your system

bool enablePacketDownload:
Enable Packet Download
Can be ignored, defaults to true

int baudRate:
The data transfer rate
Can be ignored, defaults to 115200

UInt64 encKey:
Host encryption key
Can be ignored, defaults to 0x0123456701234567

Returns True on successful initiating of the download routine, otherwise,
False.

Document Revision - v.1 ITL SDK Package Manual - 336

•
•
•
•

SSP Interface References

Change History

Version Date Comment

1 20 Jan 2025 Initial Release

Contents
SSP Manual Introduction
SSP Overview
SSP Commands
SSP Events

	Change History
	Contents
	Welcome to the ITL SDK Package documentation!
	Happy Coding!
	Contents
	ITL SDK Package Introduction
	Contents
	Purpose of this document
	General Description
	Library Versions
	Supported Runtimes
	ITL SDK Package Folder Structure
	…\ITL_SDK_Package_vX.y.z
	…\ITL_SDK_Package_vX.y.z\C#.NET4.8_Framework
	…\ITL_SDK_Package_vX.y.z\C#.NET8
	…\ITL_SDK_Package_vX.y.z\C#.NET8_REST
	…\ITL_SDK_Package_vX.y.z\C#.NET8_REST_Android
	…\ITL_SDK_Package_vX.y.z\ChangeHistory.txt

	API Structure
	Application Example using the REST Interface
	Application Example using the C#.NET Methods

	Product Support
	Test Scripts
	ITL SDK Package Version Convention

	For Windows Applications
	Contents
	Description
	Installing .NET 8 if required
	Instructions on setting up the local server
	Postman Collection
	Globals Table (Environments tab)
	Authenticate Request Body

	Order of requests for initial setup

	For Linux Applications
	Contents
	Introduction
	Pre-Requisites
	Download and install required resources
	COM Port Configurations
	Running the ITL Rest Server
	Making REST request using curl
	Making REST request using Postman

	For Android Applications
	Contents
	Introduction
	Pre-requisites
	Download and install the required resources
	Running the ITL REST Server
	Sending REST Requests using API Tester
	SSP Lower-Level Logging

	Cash Device REST API
	Overview
	API Endpoints
	REST API - Authenticate
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	Android REST API - GetConnectedUSBDevices
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - UpdateCredentials
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - OpenConnection
	Description
	Request Body Structure

	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - DisconnectDevice
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - StartDevice
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - StopDevice
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - LogRawPackets
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetCompleteCashDevice
	Description
	Public Read-Only Variables of CashDevice class Table

	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetDeviceStatus
	Description
	Response Types and Strings
	transactionType
	Response Examples
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetCounters
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetAllLevels
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetCurrencyAssignment
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - SetDenominationLevel
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - EnablePayout
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - EnablePayoutDevice
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - EnablePayoutDeviceWithByte
	Description
	Request Body Structure
	Single Denomination Recycler
	Multi Denomination Recycler

	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - DisablePayout
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - EnableAcceptor
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - DisableAcceptor
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - SetAutoAccept
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - AcceptFromEscrow
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - ReturnFromEscrow
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - SetDenominationInhibits
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - SetDenominationInhibitByIndex
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - SetDenominationInhibit
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - SetDenominationRoute
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetBarcodeReaderConfiguration
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - SetBarcodeReaderConfiguration
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetBarcodeInhibit
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - SetBarcodeInhibit
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetBarcodeData
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - DispenseValue
	Description
	Responses
	errorReason

	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - PayoutByDenomination
	Description
	Responses
	errorReason

	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - PayoutMultipleDenominations
	Description
	Responses
	errorReason

	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - Float
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - SetCashboxPayoutLimit
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - SmartEmpty
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - SendCustomCommand
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - EnableCoinMechOrFeeder
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - ResetDevice
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - HaltPayout
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetRCMode
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - Replenish
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - RefillMode
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - KeyExchangeLimit32bit
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetHopperOptions
	Description
	Responses
	Example Response

	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - SetHopperOptions
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetGlobalErrorCode
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetServiceInformation
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetServiceInformationForModule
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - SetServiceInformationMaintenanceReset
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - SetNoPayinCount
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - Purge
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - PurgeDevice
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - PurgeDeviceHopper
	Description
	Responses
	Examples
	C#
	NodeJS
	Python
	Java

	REST API - CoinStir
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - CoinStirWithMode
	Description
	Modes

	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetCoinAcceptance
	Description
	Device

	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetCoinsExit
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - SetRealTimeClock
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetRealTimeClock
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - SetCashboxLevels
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - ClearCashboxLevels
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetCashboxLevels
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - SetSorterRoute
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetSorterRouteAssignment
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - SetPayoutLimit
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetPayoutCount
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - SetTwInMode
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - ExtendedGetDatasetVersion
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - ExtendedGetFirmwareVersion
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - comPortReadError
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - DeviceState_StartupReady
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetLifterStatus
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetLastRejectCode
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - DeviceErrorLimpMode
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - DeviceStateLimpMode
	Description
	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - StartDownload
	Description
	Body Parameters

	Responses
	Code Examples
	C#
	NodeJS
	Python
	Java

	REST API - GetDownloadStatus
	Description
	Responses
	Example Responses

	Code Examples
	C#
	NodeJS
	Python
	Java

	Cash Device C#.NET API
	Change History
	Contents
	Public Read-Only Variables of CashDevice class
	Public Events of CashDevice class
	Public Methods of CashDevice class
	Methods
	Public Method: Open
	Public Method: GetUnitInfo
	Public Method: Connect
	Public Method: startRunning
	Public Method: stopRunning
	Public Method: Close
	Public Method: Disconnect
	Public Method: SetDenominationInhibitsSingleCurrency
	Public Method: SetDenominationInhibits
	Public Method: SetDenominationInhibitSingleCurrency
	Public Method: (1) SetDenominationInhibit
	Public Method: (2) SetDenominationInhibit
	Public Method: SetDenominationLevel
	Public Method: DispenseValueSingleCurrency
	Public Method: DispenseValue
	Public Method: (1) PayoutByDenomination
	Public Method: (2) PayoutByDenomination
	Public Method: Float
	Public Method: SetCashBoxPayoutLimit
	Public Method: SmartEmpty
	Public Method: SetDenominationRouteSingleCurrency
	Public Method: (1) SetDenominationRoute
	Public Method: (2) SetDenominationRoute
	Public Method: EnableAcceptor
	Public Method: DisableAcceptor
	Public Method: EnablePayout
	Public Method: DisablePayout
	Public Method: HaltPayout
	Public Method: ResetDevice
	Public Method: SendCustomCommand
	Public Method: EnableCoinMechOrFeeder
	Public Method: Replenish
	Public Method: RefillMode
	Public Method: AcceptFromEscrow
	Public Method: ReturnFromEscrow
	Public Method: KeyExchangelimit32bit
	Public Method: GetAllLevels
	Public Method: GetStoredValue
	Public Method: GetHopperOptions
	Public Method: SetHopperOptions
	Public Method: LogRawPackets
	Public Method: GetGlobalErrorCode
	Public Method: (1) GetServiceInformation
	Public Method: (2) GetServiceInformation
	Public Method: SetServiceInformation
	Public Method: SetServiceInformation_MaintenanceReset
	Public Method: SetNoPayinCount
	Public Method: (1) Purge
	Public Method: (2) Purge
	Public Method: (3) Purge
	Public Method: GetCoinAcceptance(byte device)
	Public Method: GetCounters()
	Public Method: (1) CoinStir
	Public Method: (2) CoinStir
	Public Method: GetCoinsExit
	Public Method: SetRealTimeClock
	Public Method: GetRealTimeClock
	Public Method: SetCashboxLevels
	Public Method: ClearCashboxLevels
	Public Method: GetCashboxLevels
	Public Method: SetSorterRoute
	Public Method: SetPayoutLimit
	Public Method: GetPayoutCount
	Public Method: SetTwinMode
	Public Method: ExtendedGetDatasetVersion
	Public Method: ExtendedGetFirmwareVersion
	Public Method: comPortReadError
	Public Method: DeviceState_StartupReady
	Public Method: Get_Lifter_Status
	Public Method: GetLastRejectCode
	Public Method: Set_Denomination_Level
	Public Method: DeviceError_LimpMode
	Public Method: DeviceState_LimpMode
	Public Method: GetBarcodeData
	Public Method: SetBarcodeReaderConfiguration
	Public Method: GetBarcodeReaderConfiguration
	Public Method: SetBarcodeInhibit
	Public Method: GetBarcodeInhibit
	Public Method: DownloadFirmware

	SSP Interface References
	Change History
	Contents

